cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294044 a(0) = 0, a(1) = a(2) = 1; a(2*n) = 2*a(n) + a(n+1), a(2*n+1) = a(n) + a(n+1).

Original entry on oeis.org

0, 1, 1, 2, 4, 3, 8, 6, 11, 7, 14, 11, 22, 14, 23, 17, 29, 18, 28, 21, 39, 25, 44, 33, 58, 36, 51, 37, 63, 40, 63, 46, 76, 47, 64, 46, 77, 49, 81, 60, 103, 64, 94, 69, 121, 77, 124, 91, 152, 94, 123, 87, 139, 88, 137, 100, 166, 103, 143, 103, 172, 109, 168, 122, 199, 123, 158, 111, 174, 110, 169
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 22 2017

Keywords

Examples

			a(0) = 0; a(1) = a(2) = 1;
a(3) = a(2*1+1) = a(1) + a(2) = 2;
a(4) = a(2*2) = 2*a(2) + a(3) = 4;
a(5) = a(2*2+1) = a(2) + a(3) = 3;
a(6) = a(2*3) = 2*a(3) + a(4) = 8, etc.
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 3*x^5 + 8*x^6 + 6*x^7 + 11*x^8 + 7*x^9 + 14*x^10 + ... - _Michael Somos_, Jul 24 2023
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
      if n::odd then procname((n+1)/2)+procname((n-1)/2)
      else 2*procname(n/2)+procname(n/2+1)
      fi
    end proc:
    f(0):= 0: f(1):= 1: f(2):= 1:
    map(f, [$0..100]); # Robert Israel, Oct 24 2017
  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 1; a[n_] := If[EvenQ[n], 2 a[n/2] + a[(n + 2)/2],  a[(n - 1)/2] + a[(n + 1)/2]]; Table[a[n], {n, 0, 70}]
  • PARI
    {a(n) = if(n<1, 0, n<3, 1, n%2, a(n\2) + a(n\2+1), 2*a(n\2) + a(n\2+1))}; /* Michael Somos, Jul 24 2023 */

Formula

a(n) = a(2*n) - a(2*n+1) for n > 1.
a(n+1) = 2*a(2*n+1) - a(2*n) for n > 1.
a(2^(k+1)) = floor(phi^(2*k+1)) = A002878(k), where phi is the golden ratio (A001622).
a(2^(k+1)+1) = phi^(2*k) + phi^(-2*k) = A005248(k).
a(2^(k+1)-1) = floor(phi^(2*k)) = A005592(k).
G.f. g(x) satisfies g(x) = (x + 2 + 1/x + 1/x^2)*g(x^2) - 1 - 2*x^2. - Robert Israel, Oct 24 2017