A294046 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(1/(1-x)^k - 1).
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 13, 0, 1, 4, 21, 68, 73, 0, 1, 5, 36, 195, 580, 501, 0, 1, 6, 55, 424, 2241, 5912, 4051, 0, 1, 7, 78, 785, 6136, 30483, 69784, 37633, 0, 1, 8, 105, 1308, 13705, 104544, 476469, 933200, 394353, 0, 1, 9, 136, 2023, 26748
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, ... 0, 3, 10, 21, 36, ... 0, 13, 68, 195, 424, ... 0, 73, 580, 2241, 6136, ... 0, 501, 5912, 30483, 104544, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
A[0, ] = 1; A[n, k_] := k*(n-1)!*Sum[Binomial[j+k-1, k]*A[n-j, k]/(n-j)!, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
Formula
A(0,k) = 1 and A(n,k) = k * (n-1)! * Sum_{j=1..n} binomial(j+k-1,k)*A(n-j,k)/(n-j)! for n > 0.