cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294074 Primes of the form p*2^k + 1, where p is an odd prime and k is odd.

Original entry on oeis.org

7, 11, 23, 41, 47, 59, 83, 89, 97, 107, 137, 167, 179, 227, 233, 263, 347, 353, 359, 383, 467, 479, 503, 563, 569, 587, 641, 719, 809, 839, 857, 863, 887, 929, 983, 1019, 1049, 1097, 1187, 1193, 1283, 1307, 1319, 1367, 1409, 1433, 1439, 1487, 1523, 1619, 1697
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 07 2018

Keywords

Comments

I conjecture that a number of the form p*2^k + 1 (with odd prime p and odd k) belongs to this sequence if and only if p*2^k + 1 divides (p + 2)^(p*2^k) - 1.
This conjecture has been verified for n up to 10^10.

Crossrefs

Subsequence of A058500.

Programs

  • Maple
    filter:= proc(n) local k; if not isprime(n) then return false fi; k:= padic:-ordp(n-1,2); k::odd and isprime((n-1)/2^k) end proc:
    select(filter, [seq(n,n=3..2000,2)]); # Robert Israel, Mar 13 2018
  • Mathematica
    lst = {}; Do[v = IntegerExponent[m - 1, 2]; If[OddQ[v], If[PrimeQ[(m - 1)/2^v] && PrimeQ[m], AppendTo[lst, m]]], {m, 3, 1697, 2}]; lst
  • PARI
    isok(p) = isprime(p) && (pp=p-1) && (v=valuation(pp,2)) && (v%2) && isprime(pp/2^v); \\ Michel Marcus, Feb 09 2018