cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294092 Numbers k == 119 (mod 120) such that 2^((k-1)/2), 3^((k-1)/2) and 5^((k-1)/2) are congruent to 1 (mod k).

Original entry on oeis.org

239, 359, 479, 599, 719, 839, 1319, 1439, 1559, 2039, 2399, 2879, 2999, 3119, 3359, 3719, 4079, 4679, 4799, 4919, 5039, 5279, 5399, 5519, 5639, 5879, 6359, 6599, 6719, 6959, 7079, 7559, 7919, 8039, 8999, 9239, 9479, 9719, 9839, 10079, 10559, 10799, 11159, 11279
Offset: 1

Views

Author

Jonas Kaiser, Feb 09 2018

Keywords

Comments

So far no composite numbers have been found in this sequence. There are no pseudoprimes up to 2^64 in this sequence, so a composite term in this sequence has to exceed 18446744066047760377.

Crossrefs

Cf. A001567. Subsequence of A295835.

Programs

  • GAP
    Filtered([1..14000],n->n mod 120=119 and 2^((n-1)/2) mod n =1 and 3^((n-1)/2) mod n =1 and 5^((n-1)/2) mod n =1); # Muniru A Asiru, Feb 15 2018
  • Mathematica
    k = 119; lst = {}; While[k < 12000, If[ PowerMod[{2, 3, 5}, (k - 1)/2, k] == {1, 1, 1}, AppendTo[lst, k]];  k += 120]; lst (* Robert G. Wilson v, Feb 11 2018 *)
  • PARI
    is(n) = n%120==119 && Mod(2, n)^((n-1)\2)==1 && Mod(3, n)^((n-1)\2)==1 && Mod(5, n)^((n-1)\2)==1
    
  • Python
    A294092_list, k, m = [], 119, 59
    while len(A294092_list) < 10000:
        if pow(2,m,k) == 1 and pow(3,m,k) == 1 and pow(5,m,k) == 1:
            A294092_list.append(k)
        k += 120
        m += 60 # Chai Wah Wu, Feb 09 2018
    

Extensions

More terms from Chai Wah Wu, Feb 10 2018