A294109 Sum of the larger parts of the partitions of n into two parts with smaller part prime.
0, 0, 0, 2, 3, 7, 9, 11, 13, 20, 23, 26, 29, 39, 43, 47, 51, 55, 59, 63, 67, 82, 87, 92, 97, 115, 121, 127, 133, 139, 145, 151, 157, 180, 187, 194, 201, 227, 235, 243, 251, 259, 267, 275, 283, 314, 323, 332, 341, 350, 359, 368, 377, 386, 395, 404, 413, 451
Offset: 1
Programs
-
Mathematica
Table[Sum[(n - i) (PrimePi[i] - PrimePi[i - 1]), {i, Floor[n/2]}], {n, 80}] Table[Total[Select[IntegerPartitions[n,{2}],PrimeQ[#[[2]]]&][[All,1]]],{n,80}] (* Harvey P. Dale, Jul 08 2019 *)
Formula
a(n) = Sum_{i=1..floor(n/2)} (n - i) * c(i), where c is the prime characteristic (A010051).