A294137 Number of compositions (ordered partitions) of n into nontrivial divisors of n.
1, 0, 0, 0, 1, 0, 2, 0, 5, 1, 2, 0, 50, 0, 2, 2, 55, 0, 185, 0, 243, 2, 2, 0, 8903, 1, 2, 19, 1219, 0, 48824, 0, 5271, 2, 2, 2, 1323569, 0, 2, 2, 369182, 0, 1659512, 0, 36636, 5111, 2, 0, 254187394, 1, 53535, 2, 223502, 0, 65005979, 2, 16774462, 2, 2, 0, 235105418684, 0, 2, 41386, 47350055, 2
Offset: 0
Keywords
Examples
a(8) = 5 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are nontrivial divisors {2, 4} therefore we have [4, 4], [4, 2, 2], [2, 4, 2], [2, 2, 4] and [2, 2, 2, 2].
Programs
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[d[[k]] != 1 && d[[k]] != n] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 65}]
Formula
a(n) = [x^n] 1/(1 - Sum_{d|n, 1 < d < n} x^d).