cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294138 Number of compositions (ordered partitions) of n into proper divisors of n.

Original entry on oeis.org

1, 0, 1, 1, 5, 1, 24, 1, 55, 19, 128, 1, 1627, 1, 741, 449, 5271, 1, 45315, 1, 83343, 3320, 29966, 1, 5105721, 571, 200389, 26425, 5469758, 1, 154004510, 1, 47350055, 226019, 9262156, 51885, 15140335649, 1, 63346597, 2044894, 14700095925, 1, 185493291000, 1, 35539518745, 478164162
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2017

Keywords

Examples

			a(4) = 5 because 4 has 3 divisors {1, 2, 4} among which 2 are proper divisors {1, 2} therefore we have [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[d[[k]] != n] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 45}]

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, d < n} x^d).
a(n) = A100346(n) - 1.

A331979 Number of compositions (ordered partitions) of n into distinct nontrivial divisors of n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 894, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 894, 0, 0, 0, 0, 0, 30, 0, 120, 0, 0, 0, 19518, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 18558, 0, 0, 0, 0, 0, 6, 0, 864
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(12) = 6 because we have [6, 4, 2], [6, 2, 4], [4, 6, 2], [4, 2, 6], [2, 6, 4] and [2, 4, 6].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1, n})[]]):
          b:= proc(m, i, p) option remember; `if`(m=0, p!, `if`(i<1, 0,
                 b(m, i-1, p)+`if`(l[i]>m, 0, b(m-l[i], i-1, p+1))))
              end; forget(b):
          b(n, nops(l), 0)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 03 2020
  • Mathematica
    a[n_] := If[n == 0, 1, Module[{b, l = Divisors[n] ~Complement~ {1, n}}, b[m_, i_, p_] := b[m, i, p] = If[m == 0, p!, If[i < 1, 0, b[m, i-1, p] + If[l[[i]] > m, 0, b[m - l[[i]], i-1, p+1]]]]; b[n, Length[l], 0]]];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

A357312 Number of compositions (ordered partitions) of n into divisors of n that are smaller than sqrt(n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 13, 1, 34, 1, 89, 1, 927, 1, 610, 189, 1597, 1, 35890, 1, 46754, 1873, 28657, 1, 3919944, 1, 196418, 18560, 4205249, 1, 110187694, 1, 39882198, 183916, 9227465, 9496, 10312882481, 1, 63245986, 1822473, 11969319436, 1, 141930520462, 1, 34020543362, 339200673
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory; local b, l;
          l, b:= select(x-> is(xm, 0, b(m-j)), j=l))
          end; b(n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Sep 23 2022
  • Mathematica
    a[n_] := SeriesCoefficient[1/(1 - Sum[Boole[d < Sqrt[n]] x^d, {d, Divisors[n]}]), {x, 0, n}]; Table[a[n], {n, 0, 45}]

Formula

a(n) = [x^n] 1 / (1 - Sum_{d|n, d < sqrt(n)} x^d).

A327766 Number of compositions (ordered partitions) of n into divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 13, 1, 34, 19, 89, 1, 927, 1, 610, 189, 4930, 1, 35890, 1, 46754, 1873, 28657, 1, 3919944, 571, 196418, 18560, 4205249, 1, 110187694, 1, 39882198, 183916, 9227465, 9496, 14484956252, 1, 63245986, 1822473, 11969319436, 1, 141930520462, 1, 34020543362, 339200673
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[1/(1 - Sum[Boole[d <= Sqrt[n]] x^d, {d, Divisors[n]}]), {x, 0, n}]; Table[a[n], {n, 0, 45}]

Formula

a(n) = [x^n] 1 / (1 - Sum_{d|n, d <= sqrt(n)} x^d).
a(p) = 1, where p is prime.
Showing 1-4 of 4 results.