cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332001 Number of compositions (ordered partitions) of n into distinct parts that do not divide n.

Original entry on oeis.org

1, 0, 0, 0, 0, 2, 0, 4, 2, 4, 4, 20, 2, 34, 14, 20, 14, 146, 8, 244, 22, 140, 202, 956, 16, 782, 596, 752, 216, 5786, 82, 10108, 640, 4016, 5200, 6028, 218, 53674, 14570, 19004, 980, 152810, 1786, 245884, 13588, 16534, 108382, 719156, 1494, 532532, 54316
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(9) = 4 because we have [7, 2], [5, 4], [4, 5] and [2, 7].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b, l; l, b:= numtheory[divisors](n),
          proc(m, i, p) option remember; `if`(m=0, p!, `if`(i<2, 0,
            b(m, i-1, p)+`if`(i>m or i in l, 0, b(m-i, i-1, p+1))))
          end; forget(b): b(n, n-1, 0)
        end:
    seq(a(n), n=0..63);  # Alois P. Heinz, Feb 04 2020
  • Mathematica
    a[n_] := Module[{b, l = Divisors[n]}, b[m_, i_, p_] := b[m, i, p] = If[m == 0, p!, If[i < 2, 0, b[m, i - 1, p] + If[i > m || MemberQ[l, i], 0, b[m - i, i - 1, p + 1]]]]; b[n, n - 1, 0]];
    a /@ Range[0, 63] (* Jean-François Alcover, Nov 30 2020, after Alois P. Heinz *)
Showing 1-1 of 1 results.