cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294140 Number of total dominating sets in the n-crown graph.

Original entry on oeis.org

0, 1, 16, 121, 676, 3249, 14400, 61009, 252004, 1026169, 4145296, 16670889, 66879684, 267944161, 1072693504, 4292739361, 17175150916, 68709515625, 274856935824, 1099467588025, 4397954236900, 17591993106961, 70368341525056, 281474137850481, 1125898162012836
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2018

Keywords

Comments

In a total dominating set each side of the crown graph requires any two vertices on the other side to dominate it. - Andrew Howroyd, Apr 16 2018

Crossrefs

Programs

  • Mathematica
    Table[(1 - 2^n + n)^2, {n, 20}]
    LinearRecurrence[{11, -47, 101, -116, 68, -16}, {0, 1, 16, 121, 676, 3249}, 20]
    CoefficientList[Series[x (1 + 5 x - 8 x^2 - 4 x^3)/((-1 + x)^3 (-1 + 2 x)^2 (-1 + 4 x)), {x, 0, 20}], x]
  • PARI
    a(n)=(2^n-1-n)^2; \\ Andrew Howroyd, Apr 16 2018

Formula

a(n) = (2^n - 1 - n)^2. - Andrew Howroyd, Apr 16 2018
a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) -16*a(n-6).
G.f.: x^2*(1 + 5*x - 8*x^2 - 4*x^3)/((-1 + x)^3*(-1 + 2*x)^2*(-1 + 4*x)).

Extensions

a(1)-a(2) and a(11)-a(25) from Andrew Howroyd, Apr 16 2018