A294149 Numbers k such that the sum of divisors of k is divisible by the sum of nontrivial divisors of k (that is, excluding 1 and k).
15, 20, 35, 95, 104, 119, 143, 207, 209, 287, 319, 323, 377, 464, 527, 559, 650, 779, 899, 923, 989, 1007, 1023, 1189, 1199, 1343, 1349, 1519, 1763, 1919, 1952, 2015, 2159, 2507, 2759, 2911, 2915, 2975, 3239, 3599, 3827, 4031, 4199, 4607, 5183, 5207, 5249
Offset: 1
Keywords
Examples
15 is in the sequence since sigma(15)/(sigma(15)-15-1) = 24/8 = 3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Quiet@ Select[Range[2, 5300], And[IntegerQ[#], # > 1] &[#2/(#2 - #1 - 1)] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Oct 24 2017 *)
-
PARI
lista(nn) = forcomposite(n=1, nn, if (denominator(sigma(n)/(sigma(n)-n-1)) == 1, print1(n, ", "))); \\ Michel Marcus, Oct 24 2017
-
PARI
list(lim)=my(v=List(),s,t); forfactored(n=9,lim\1, s=sigma(n); t=s-n[1]-1; if(t && s%t==0, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 11 2017
Formula
This sequence gives all numbers a(n) in increasing order which satisfy A000203(a(n))/A048050(a(n)) = A000203(a(n))/(A000203(a(n)) - (a(n)+1)) = k(n), with a positive integer k(n) for n >= 1. - Wolfdieter Lang, Nov 10 2017
Extensions
Edited by Wolfdieter Lang, Nov 10 2017
Name corrected by Michel Marcus, Nov 12 2017
Comments