A294169 Semiprimes k = pq such that p^k == p (mod k) and q^k == q (mod k).
65, 133, 301, 793, 2041, 2413, 2501, 2701, 3781, 4699, 5617, 5963, 7081, 7991, 9073, 9881, 9937, 10261, 10349, 12209, 13213, 13333, 14111, 14981, 18721, 20737, 24727, 27133, 31201, 31621, 35431, 40321, 47197, 49141, 49591, 49601, 54913, 60701, 64079, 65869, 67721, 70801
Offset: 1
Keywords
Examples
65 = 5*13 is a term since 5^65 == 5 (mod 65) and 13^65 == 13 (mod 65). Equivalently: 5^(5-1) == 1 (mod 13) and 13^(13-1) == 1 (mod 5). Also (13-5)^(5*13-1) == 1 (mod 5*13) or (13-5)^(13-5) == 1 (mod 5*13).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..2812
Programs
-
Mathematica
k = 4; lst = {}; NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sp}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega@ sp != 2, If[ sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; fQ[k_] := Block[{fi = First@# & /@ FactorInteger@ k}, PowerMod[#, k, k] & /@ fi == fi]; While[k < 100000, If[ fQ@ k, AppendTo[lst, k]]; k = NextSemiPrime@ k] (* Robert G. Wilson v, Feb 10 2018 *)
-
PARI
lista(nn) = {for (n=1, nn, if (bigomega(n) == 2, if (omega(n) == 2, p = factor(n)[1,1]; q = factor(n)[2,1];, p = factor(n)[1,1]; q = factor(n)[1,1];); mp = Mod(p, n); mq = Mod(q, n); if ((mp^n == mp) && (mq^n == mq), print1(n, ", "));););} \\ Michel Marcus, Feb 10 2018
Extensions
More terms from Michel Marcus, Feb 10 2018
Edited by Thomas Ordowski, Mar 12 2019
Comments