cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294169 Semiprimes k = pq such that p^k == p (mod k) and q^k == q (mod k).

Original entry on oeis.org

65, 133, 301, 793, 2041, 2413, 2501, 2701, 3781, 4699, 5617, 5963, 7081, 7991, 9073, 9881, 9937, 10261, 10349, 12209, 13213, 13333, 14111, 14981, 18721, 20737, 24727, 27133, 31201, 31621, 35431, 40321, 47197, 49141, 49591, 49601, 54913, 60701, 64079, 65869, 67721, 70801
Offset: 1

Views

Author

Thomas Ordowski, Feb 10 2018

Keywords

Comments

The number k = pq is a weak pseudoprime to prime bases p and q.
Problem: are there infinitely many such numbers?
All the terms are odd squarefree semiprimes.
Semiprimes pq such that p^(p-1) == 1 (mod q) and q^(q-1) == 1 (mod p).
Odd semiprimes pq such that (q-p)^(q-p) == 1 (mod pq).
Semiprimes pq > 6 such that (q-p)^(q-p) == 1 (mod pq).
Odd semiprimes pq pseudoprime to base q-p.

Examples

			65 = 5*13 is a term since 5^65 == 5 (mod 65) and 13^65 == 13 (mod 65).
Equivalently: 5^(5-1) == 1 (mod 13) and 13^(13-1) == 1 (mod 5).
Also (13-5)^(5*13-1) == 1 (mod 5*13) or (13-5)^(13-5) == 1 (mod 5*13).
		

Crossrefs

Cf. A001358.
Subsequence of A046388.

Programs

  • Mathematica
    k = 4; lst = {}; NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sp}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega@ sp != 2, If[ sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; fQ[k_] := Block[{fi = First@# & /@ FactorInteger@ k}, PowerMod[#, k, k] & /@ fi == fi]; While[k < 100000, If[ fQ@ k, AppendTo[lst, k]]; k = NextSemiPrime@ k] (* Robert G. Wilson v, Feb 10 2018 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (bigomega(n) == 2, if (omega(n) == 2, p = factor(n)[1,1]; q = factor(n)[2,1];, p = factor(n)[1,1]; q = factor(n)[1,1];); mp = Mod(p, n); mq = Mod(q, n); if ((mp^n == mp) && (mq^n == mq), print1(n, ", "));););} \\ Michel Marcus, Feb 10 2018

Extensions

More terms from Michel Marcus, Feb 10 2018
Edited by Thomas Ordowski, Mar 12 2019