cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294173 Numbers k whose nearest neighbors have the same number of divisors, the same number of distinct prime factors, and the same sum of divisors.

Original entry on oeis.org

34, 55, 919, 1241, 4149, 4188, 7170, 12566, 15086, 24882, 25020, 26610, 51836, 53964, 59988, 77058, 143370, 150420, 167561, 170562, 205728, 215070, 220818, 418308, 564858, 731321, 907255, 910316, 986154, 1239870, 1569336, 1622914, 1841861, 1887240, 1979307, 2229012, 2262108
Offset: 1

Views

Author

Torlach Rush, Feb 10 2018

Keywords

Comments

mu(k-1) = mu(k+1), where mu(k) = A008683(k), since k-1 and k+1 have the same number of distinct prime factors.
tau(k-1) = tau(k+1) = abs(phi(k-1) - phi(k+1)) iff abs(phi(k-1) - phi(k+1)) = 4, where phi(j) is A000010. When tau(j) = 4 omega(j) = 2 and phi(j), the product of two even numbers is divisible by 4.
For known elements:
- sigma(k +- 1) and tau(k +- 1) the greatest common divisor is 4.
- sigma(k +- 1) is divisible by tau(k +- 1).
- the digital root of sigma(k +- 1) is either 3 or 9.
- the prime signature of k +- 1 is the same (see question below).
The first prime terms are 919, 110495719, 2587274227, 3908452759, 4020447619, and 9314901619. - Giovanni Resta, Feb 12 2018
Are the prime signatures of k +- 1 always the same? - Andrey Zabolotskiy, Feb 14 2018

Examples

			34 is in the sequence because tau(33)=tau(35)=4, omega(33)=omega(35)=2, and sigma(33)=sigma(35)=48.
919 is in the sequence because tau(918)=tau(920)=16, omega(918)=omega(920)=3, and sigma(918)=sigma(920)=2160.
		

Crossrefs

Intersection of A067888, A088070, and A055574.

Programs

  • GAP
    Filtered([2..2000000],k->Sigma(k-1)=Sigma(k+1) and Number(FactorsInt(k-1))=Number(FactorsInt(k+1)) and Tau(k-1)=Tau(k+1)); # Muniru A Asiru, Feb 17 2018
    
  • Maple
    with(numtheory):
    select(k->sigma(k-1)=sigma(k+1) and mobius(k-1)=mobius(k+1) and tau(k-1)=tau(k+1), [$2..2000000]); # Muniru A Asiru, Feb 17 2018
  • Mathematica
    1 + Position[Partition[Array[{DivisorSigma[0, #], DivisorSigma[1, #], PrimeOmega[#]} &, 10^6], 3, 1], ?(#[[1]] == +#[[-1]] &), {1}, Heads -> False][[All, 1]] (* _Michael De Vlieger, Feb 17 2018 *)
  • PARI
    list(lim)=my(v=List(),k2=7,s2=sigma(k2),k1=8,s1=sigma(k1),s); forfactored(k=9,1+lim\1, s=sigma(k); if(s==s2 && numdiv(k)==numdiv(k2) && omega(k)==omega(k2), listput(v,k1[1])); k2=k1; k1=k; s2=s1; s1=s); Vec(v) \\ Charles R Greathouse IV, Feb 20 2018