A294173 Numbers k whose nearest neighbors have the same number of divisors, the same number of distinct prime factors, and the same sum of divisors.
34, 55, 919, 1241, 4149, 4188, 7170, 12566, 15086, 24882, 25020, 26610, 51836, 53964, 59988, 77058, 143370, 150420, 167561, 170562, 205728, 215070, 220818, 418308, 564858, 731321, 907255, 910316, 986154, 1239870, 1569336, 1622914, 1841861, 1887240, 1979307, 2229012, 2262108
Offset: 1
Keywords
Examples
34 is in the sequence because tau(33)=tau(35)=4, omega(33)=omega(35)=2, and sigma(33)=sigma(35)=48. 919 is in the sequence because tau(918)=tau(920)=16, omega(918)=omega(920)=3, and sigma(918)=sigma(920)=2160.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1478
Programs
-
GAP
Filtered([2..2000000],k->Sigma(k-1)=Sigma(k+1) and Number(FactorsInt(k-1))=Number(FactorsInt(k+1)) and Tau(k-1)=Tau(k+1)); # Muniru A Asiru, Feb 17 2018
-
Maple
with(numtheory): select(k->sigma(k-1)=sigma(k+1) and mobius(k-1)=mobius(k+1) and tau(k-1)=tau(k+1), [$2..2000000]); # Muniru A Asiru, Feb 17 2018
-
Mathematica
1 + Position[Partition[Array[{DivisorSigma[0, #], DivisorSigma[1, #], PrimeOmega[#]} &, 10^6], 3, 1], ?(#[[1]] == +#[[-1]] &), {1}, Heads -> False][[All, 1]] (* _Michael De Vlieger, Feb 17 2018 *)
-
PARI
list(lim)=my(v=List(),k2=7,s2=sigma(k2),k1=8,s1=sigma(k1),s); forfactored(k=9,1+lim\1, s=sigma(k); if(s==s2 && numdiv(k)==numdiv(k2) && omega(k)==omega(k2), listput(v,k1[1])); k2=k1; k1=k; s2=s1; s1=s); Vec(v) \\ Charles R Greathouse IV, Feb 20 2018
Comments