A294179 a(n) is the smallest k with n prime factors such that p^k == p (mod k) for every prime p dividing k.
2, 65, 561, 41041, 825265, 321197185, 5394826801, 232250619601, 9746347772161
Offset: 1
Programs
-
Maple
for k from 2 to 10^6 do if numtheory:-issqrfree(k) then ps := numtheory:-factorset(k); n := nops(ps); if not assigned(A[n]) and andmap(p -> p &^ k -p mod k = 0, ps) then A[n] := k; end if end if; end do: seq(A[i],i=1..max(map(op, [indices(A)]))); # Robert Israel, Feb 11 2018
-
Mathematica
With[{s = Select[Range[10^6], Function[k, AllTrue[FactorInteger[k][[All, 1]], PowerMod[#, k, k] == Mod[#, k] &]]]}, Select[Table[SelectFirst[s, PrimeOmega@ # == n &], {n, 5}], IntegerQ]] (* Michael De Vlieger, Feb 20 2018 *)
Extensions
a(7)-a(8) from Daniel Suteu, Feb 06 2023
a(9) from Michael S. Branicky, Aug 03 2023
Comments