A294195
Product of all primes between n!+1 and (n+1)!.
Original entry on oeis.org
1, 2, 15, 7436429, 141690116050851861774628683971583952877
Offset: 0
Cf.
A061232 (number of primes between n!+1 and (n+1)!).
Cf.
A294193 (sum of integers between n!+1 and (n+1)!).
Cf.
A294194 (sum of primes between n!+1 and (n+1)!).
Cf.
A294196 (log of product of primes between n!+1 and (n+1)!).
-
Table[Times @@ Table[Prime[i], {i, PrimePi[n!] + 1, PrimePi[(n + 1)!]}], {n, 0, 4}]
A063959
Sum of the primes from 1 to n!.
Original entry on oeis.org
0, 0, 2, 10, 100, 1593, 41741, 1578242, 80294846, 5356015580, 451223209946, 46900682786541, 5891009442510166, 879657744587755114, 153967535281046615774, 31216213430872403460411, 7256556722488434503836458, 1917031284234466887065107947, 571083301099266868435687532291
Offset: 0
a(4) = sum of primes <= 24. They are 2, 3, 5, 7, 11, 13, 17, 19 and 23. This sum is 100.
-
NextPrim[n_] := (k = n + 1; While[ ! PrimeQ[k], k++ ]; k); s = 0; p = 1; Do[ Do[p = NextPrim[p]; s = s + p, {i, PrimePi[(n - 1)! ] + 1, PrimePi[(n)! ]}]; Print[s], {n, 1, 12} ]
Do[ Print[ Sum[ Prime[k], {k, 1, PrimePi[n! ]}]], {n, 0, 10} ]
Table[Total[Prime[Range[PrimePi[n!]]]],{n,0,9}] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Aug 17 2025 *)
-
sumprime(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s); for(n=0,22,print(sumprime(n!!)))
A294196
Floor of log of product of all primes between n!+1 and (n+1)!.
Original entry on oeis.org
2, 15, 87, 579, 4276, 35103, 322168, 3264471, 36285842, 439070392, 5747983086
Offset: 2
a(3) = floor(log(7*11*13*17*19*23)) = floor(15.82) = 15.
Cf.
A061232 (number of primes between n!+1 and (n+1)!).
Cf.
A294194 (sum of primes between n!+1 and (n+1)!).
Cf.
A294195 (product of primes between n!+1 and (n+1)!).
-
Table[Floor[Plus @@ Table[Log[Prime[i]*1.], {i, PrimePi[n!] + 1, PrimePi[(n + 1)!]}]], {n, 2, 11}]
Showing 1-3 of 3 results.
Comments