A294245 Sum of the larger parts of the partitions of 2n into two parts with larger part nonsquarefree.
0, 0, 4, 4, 17, 17, 29, 29, 37, 46, 66, 66, 103, 130, 158, 158, 174, 174, 192, 192, 212, 212, 301, 301, 374, 399, 451, 478, 506, 506, 566, 629, 661, 661, 729, 729, 765, 840, 916, 916, 1037, 1037, 1121, 1121, 1165, 1210, 1302, 1302, 1350, 1498, 1548, 1548
Offset: 1
Programs
-
Mathematica
Table[Sum[(2 n - k) (1 - MoebiusMu[2 n - k]^2), {k, n}], {n, 80}]
-
PARI
a(n) = sum(i=1, n, (2*n-i)*(1 - moebius(2*n-i)^2)); \\ Michel Marcus, Feb 11 2018
Formula
a(n) = Sum_{i=1..n} (2*n-i) * (1 - mu(2*n-i)^2), where mu is the Möbius function (A008683).