A294254 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} (1-x^j) - 1).
1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, -1, 0, 1, -1, -1, 11, 1, 0, 1, -1, -1, 5, -23, -1, 0, 1, -1, -1, 5, 25, -101, 1, 0, 1, -1, -1, 5, 1, -41, 991, -1, 0, 1, -1, -1, 5, 1, 199, -1769, -1849, 1, 0, 1, -1, -1, 5, 1, 79, -1409, 7181, -24751, -1, 0, 1, -1, -1, 5
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, ... 0, -1, -1, -1, -1, ... 0, 1, -1, -1, -1, ... 0, -1, 11, 5, 5, ... 0, 1, -23, 25, 1, ... 0, -1, -101, -41, 199, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
B(j,k) is the coefficient of Product_{i=1..k} (1-x^i).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(A000217(k),n)} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0.