A294212
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} 1/(1-x^j) - 1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 5, 13, 0, 1, 1, 5, 25, 73, 0, 1, 1, 5, 31, 193, 501, 0, 1, 1, 5, 31, 241, 1601, 4051, 0, 1, 1, 5, 31, 265, 2261, 16741, 37633, 0, 1, 1, 5, 31, 265, 2501, 25501, 190345, 394353, 0, 1, 1, 5, 31, 265, 2621, 29461, 319915, 2509025
Offset: 0
Square array B(j,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, ...
0, 1, 2, 3, 3, ...
0, 1, 3, 4, 5, ...
0, 1, 3, 5, 6, ...
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 3, 5, 5, 5, ...
0, 13, 25, 31, 31, ...
0, 73, 193, 241, 265, ...
0, 501, 1601, 2261, 2501, ...
A294250
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} (1+x^j) - 1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 13, 1, 0, 1, 1, 3, 19, 49, 1, 0, 1, 1, 3, 19, 97, 261, 1, 0, 1, 1, 3, 19, 121, 681, 1531, 1, 0, 1, 1, 3, 19, 121, 921, 5971, 9073, 1, 0, 1, 1, 3, 19, 121, 1041, 8491, 50443, 63393, 1, 0, 1, 1, 3, 19, 121, 1041
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, ...
0, 1, 13, 19, 19, ...
0, 1, 49, 97, 121, ...
0, 1, 261, 681, 921, ...
A294260
E.g.f.: exp(Sum_{n>=1} A010815(n)*x^n).
Original entry on oeis.org
1, -1, -1, 5, 1, 79, -689, 2981, -7615, -172801, 3621151, -16469531, -240199871, 2722511375, 51840080111, -1987808959291, 12337235928961, 136594696115071, -1167414675803585, -56631124939839931, -1376838916423621759, 69766591820556094799
Offset: 0
A294255
E.g.f.: exp((1-x)*(1-x^2) - 1).
Original entry on oeis.org
1, -1, -1, 11, -23, -101, 991, -1849, -24751, 220823, -174689, -10924541, 87639289, 105372851, -7496679553, 52397291519, 238887991201, -7313210597969, 41947208776639, 440627548672763, -9537975555701239, 39732691614159179, 916052993052974239
Offset: 0
A294256
E.g.f.: exp((1-x)*(1-x^2)*(1-x^3) - 1).
Original entry on oeis.org
1, -1, -1, 5, 25, -41, -1769, 7181, 74705, -236305, -7562609, -4169771, 1339186729, -2144219065, -174083994265, -370106105251, 35885107199521, 252732128552671, -10892824509622625, -56149731134394715, 2589936417283432121, 31565855231279227319
Offset: 0
A294257
E.g.f.: exp((1-x)*(1-x^2)*(1-x^3)*(1-x^4) - 1).
Original entry on oeis.org
1, -1, -1, 5, 1, 199, -1409, -4579, 25985, 23759, 13872511, -129511691, -1050605951, 4703204375, 33833371391, 6781977225869, -71864943455999, -926469142419809, -2738986440688385, 11032808190085349, 16738876153047304961, -146356319119622810521
Offset: 0
A294258
Expansion of e.g.f.: exp((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5) - 1).
Original entry on oeis.org
1, -1, -1, 5, 1, 79, 31, -2059, -68095, 129599, 5586751, 36420229, -159700991, -6256012465, -94786800289, -3320395014091, 74018996229121, 1093450523140351, -4548151329265025, -222875601233847931, -7118941159301980159, -60758029090422335281
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[Times@@(1-x^Range[5])-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 29 2020 *)
-
N=66; x='x+O('x^N); Vec(serlaplace(exp((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)-1)))
Showing 1-7 of 7 results.