cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294262 a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3), with a(0) = a(1) = 1 and a(2) = 7, a linear recurrence which is a trisection of A005252.

Original entry on oeis.org

1, 1, 7, 27, 117, 493, 2091, 8855, 37513, 158905, 673135, 2851443, 12078909, 51167077, 216747219, 918155951, 3889371025, 16475640049, 69791931223, 295643364939, 1252365390981, 5305104928861, 22472785106427, 95196245354567, 403257766524697, 1708227311453353, 7236167012338111, 30652895360805795, 129847748455561293, 550043889183050965
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n+1) +(-1)^n)/2 : n in [0..30]]; // G. C. Greubel, Apr 19 2019
    
  • Mathematica
    LinearRecurrence[{3,5,1},{1,1,7},30]
  • PARI
    {a(n) = (fibonacci(3*n+1) +(-1)^n)/2}; \\ G. C. Greubel, Apr 19 2019
    
  • Sage
    [(fibonacci(3*n+1) +(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
  • bc
    a=1
    b=1
    c=7
    print 0," ",a,"\n"
    print 1," ",b,"\n"
    print 2," ",c,"\n"
    for(x=3;x<=1000;++x){
    d=3*c+5*b+1*a
    print x," ",d,"\n"
    a=b
    b=c
    c=d
    } # Hermann Stamm-Wilbrandt, Apr 18 2019
    

Formula

G.f.: (1 - 2*x - x^2)/(1 - 3*x - 5*x^2 - x^3).
a(n) = (1/20)*(10*(-1)^n + (2-sqrt(5))^n*(5-sqrt(5)) + (2+sqrt(5))^n*(5+sqrt(5))).
a(n) = A005252(3*n).
a(n) = 4*a(n-1) + a(n-2) + 2*(-1)^n for n >= 2.
a(n) = Sum_{k=0..floor(3*n/4)} binomial(3*n-2*k, 2*k).
a(n) = A110679(n) - A001076(n).
a(n) = (Fibonacci(3*n + 1) + (-1)^n)/2.
a(2*n) = A232970(2*n); a(2*n+1) = A049651(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019