A294270 Sum of the cubes of the parts in the partitions of n into two parts.
0, 2, 9, 44, 100, 252, 441, 848, 1296, 2150, 3025, 4572, 6084, 8624, 11025, 14912, 18496, 24138, 29241, 37100, 44100, 54692, 64009, 77904, 90000, 107822, 123201, 145628, 164836, 192600, 216225, 250112, 278784, 319634, 354025, 402732, 443556, 501068, 549081
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Crossrefs
Programs
-
Magma
[0] cat &cat[[k^2*(4*k^2-3*k+1),k^2*(2*k+1)^2]: k in [1..20]]; // Bruno Berselli, Nov 22 2017
-
Mathematica
Table[Sum[i^3 + (n - i)^3, {i, Floor[n/2]}], {n, 80}]
-
PARI
concat(0, Vec(x^2*(2 + 7*x + 27*x^2 + 28*x^3 + 24*x^4 + 7*x^5 + x^6) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Nov 20 2017
Formula
a(n) = Sum_{i=1..floor(n/2)} i^3 + (n-i)^3.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 7*x + 27*x^2 + 28*x^3 + 24*x^4 + 7*x^5 + x^6) / ((1 - x)^5*(1 + x)^4).
a(n) = n^2*(4*n^2 - 7*n + 4 + n*(-1)^n)/16.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>9. (End)
Comments