cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294270 Sum of the cubes of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 9, 44, 100, 252, 441, 848, 1296, 2150, 3025, 4572, 6084, 8624, 11025, 14912, 18496, 24138, 29241, 37100, 44100, 54692, 64009, 77904, 90000, 107822, 123201, 145628, 164836, 192600, 216225, 250112, 278784, 319634, 354025, 402732, 443556, 501068, 549081
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Comments

a(n) is a square when n is odd. In fact: a(2*k+1) = (2*k^2 + k)^2; a(2*k) = k^2*(4*k^2 - 3*k + 1), where (2*k)^2 > 4*k^2 - 3*k + 1 > (2*k - 1)^2 for k>0. - Bruno Berselli, Nov 20 2017

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), this sequence (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), A294275 (k=8), A294276 (k=9), A294279 (k=10).

Programs

  • Magma
    [0] cat &cat[[k^2*(4*k^2-3*k+1),k^2*(2*k+1)^2]: k in [1..20]]; // Bruno Berselli, Nov 22 2017
  • Mathematica
    Table[Sum[i^3 + (n - i)^3, {i, Floor[n/2]}], {n, 80}]
  • PARI
    concat(0, Vec(x^2*(2 + 7*x + 27*x^2 + 28*x^3 + 24*x^4 + 7*x^5 + x^6) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Nov 20 2017
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i^3 + (n-i)^3.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 7*x + 27*x^2 + 28*x^3 + 24*x^4 + 7*x^5 + x^6) / ((1 - x)^5*(1 + x)^4).
a(n) = n^2*(4*n^2 - 7*n + 4 + n*(-1)^n)/16.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>9. (End)