A294272 Sum of the fifth powers of the parts in the partitions of n into two parts.
0, 2, 33, 308, 1300, 4668, 12201, 30032, 61776, 123950, 220825, 389652, 630708, 1018808, 1539825, 2331968, 3347776, 4826682, 6657201, 9233300, 12333300, 16578452, 21571033, 28256208, 35970000, 46106918, 57617001, 72503732, 89176276, 110446800, 133987425
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
Crossrefs
Programs
-
Magma
[(n^2*(-16 + 80*n^2 + 3*(-31 + (-1)^n)*n^3 + 32*n^4))/192 : n in [1..50]]; // Wesley Ivan Hurt, Jul 12 2025
-
Mathematica
Table[Sum[i^5 + (n - i)^5, {i, Floor[n/2]}], {n, 50}] Table[Total[Flatten[IntegerPartitions[n,{2}]]^5],{n,35}] (* or *) LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{0,2,33,308,1300,4668,12201,30032,61776,123950,220825,389652,630708},40] (* Harvey P. Dale, Jun 07 2025 *)
-
PARI
concat(0, Vec(x^2*(2 + 31*x + 263*x^2 + 806*x^3 + 1748*x^4 + 2046*x^5 + 1708*x^6 + 806*x^7 + 238*x^8 + 31*x^9 + x^10) / ((1 - x)^7*(1 + x)^6) + O(x^40))) \\ Colin Barker, Nov 20 2017
Formula
a(n) = Sum_{i=1..floor(n/2)} i^5 + (n-i)^5.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 31*x + 263*x^2 + 806*x^3 + 1748*x^4 + 2046*x^5 + 1708*x^6 + 806*x^7 + 238*x^8 + 31*x^9 + x^10) / ((1 - x)^7*(1 + x)^6).
a(n) = (1/192)*(n^2*(-16 + 80*n^2 + 3*(-31 + (-1)^n)*n^3 + 32*n^4)).
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13) for n>13.
(End)