A294281 Number of ascent sequences of length n with alternating ascents and descents (unaffected by level steps).
1, 1, 2, 4, 9, 22, 59, 172, 547, 1886, 7047, 28360, 122675, 567210, 2796999, 14641044, 81191947, 475148678, 2929442263, 18965690560, 128754649699, 914056305794, 6777666961735, 52367331911180, 421188392986843, 3519168714308702, 30519733808467031
Offset: 0
Keywords
Examples
a(3) = 4: 000, 001, 010, 011. a(4) = 9: 0000, 0001, 0010, 0011, 0100, 0101, 0102, 0110, 0111. a(5) = 22: 00000, 00001, 00010, 00011, 00100, 00101, 00102, 00110, 00111, 01000, 01001, 01002, 01010, 01011, 01020, 01021, 01022, 01100, 01101, 01102, 01110, 01111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..550
Programs
-
Maple
b:= proc(n, i, t, u) option remember; `if`(n<1, 1, add( b(n-1, j, t+`if`(j>i, 1, 0), `if`(i=j, u, 1-u)), j=`if`(u=0, i..t+1, 0..i))) end: a:= n-> b(n-1, 0$3): seq(a(n), n=0..30);
Formula
a(n) = Sum_{j=0..n} binomial(n-1,j) * A099960(n-j).