A294284 Sum of the smaller parts of the partitions of n into two distinct parts with larger part squarefree.
0, 0, 1, 1, 2, 1, 3, 6, 9, 7, 10, 8, 11, 8, 12, 17, 22, 28, 34, 31, 37, 33, 40, 48, 56, 51, 59, 53, 60, 53, 61, 70, 79, 72, 82, 93, 104, 97, 109, 122, 135, 128, 142, 135, 149, 140, 154, 169, 184, 199, 214, 204, 219, 235, 251, 268, 285, 274, 292, 281
Offset: 1
Programs
-
Mathematica
Table[Sum[i*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 60}]
-
PARI
a(n) = sum(i=1, (n-1)\2, i*moebius(n-i)^2); \\ Michel Marcus, Nov 05 2017
Formula
a(n) = Sum_{i=1..floor((n-1)/2)} i * mu(n-i)^2, where mu is the Möbius function (A008683).
Comments