cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294303 Sum of the eighth powers of the parts in the partitions of n into two distinct parts.

Original entry on oeis.org

0, 0, 257, 6562, 72354, 456418, 2142595, 7841860, 24684612, 67340708, 167731333, 380410598, 812071910, 1622037830, 3103591687, 5649705096, 9961449608, 16894160328, 27957167625, 44840730666, 70540730666, 108149231146, 163239463563, 241120467148, 351625763020
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 27 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^8 + (n - i)^8, {i, Floor[(n-1)/2]}], {n, 30}]
  • PARI
    first(n) = {my(res = vector(n, i, 1/9*i^9 - 1/2*i^8 + 2/3*i^7 - 7/15*i^5 + 2/9*i^3 - 1/30*i)); forstep(i = 2, #res, 2, res[i] -= i^8/256); res} \\ David A. Corneth, Nov 05 2017
    
  • PARI
    concat(vector(2), Vec(x^3*(257 + 6305*x + 63479*x^2 + 327319*x^3 + 1103301*x^4 + 2469669*x^5 + 4014083*x^6 + 4659395*x^7 + 4014083*x^8 + 2480995*x^9 + 1103301*x^10 + 331365*x^11 + 63479*x^12 + 6551*x^13 + 257*x^14 + x^15) / ((1 - x)^10*(1 + x)^9) + O(x^40))) \\ Colin Barker, Nov 20 2017

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i^8 + (n-i)^8.
From David A. Corneth, Nov 05 2017: (Start)
For odd n, a(n) = n^9 / 9 - n^8/2 + 2*n^7 / 3 - 7*n^5 / 15 + 2*n^3 / 9 - n/30
For even n, a(n) = n^9 / 9 - 129*n^8/256 + 2*n^7 / 3 - 7*n^5 / 15 + 2*n^3 / 9 - n/30.
(End)
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^3*(257 + 6305*x + 63479*x^2 + 327319*x^3 + 1103301*x^4 + 2469669*x^5 + 4014083*x^6 + 4659395*x^7 + 4014083*x^8 + 2480995*x^9 + 1103301*x^10 + 331365*x^11 + 63479*x^12 + 6551*x^13 + 257*x^14 + x^15) / ((1 - x)^10*(1 + x)^9).
a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3) - 36*a(n-4) + 36*a(n-5) + 84*a(n-6) - 84*a(n-7) - 126*a(n-8) + 126*a(n-9) + 126*a(n-10) - 126*a(n-11) - 84*a(n-12) + 84*a(n-13) + 36*a(n-14) - 36*a(n-15) - 9*a(n-16) + 9*a(n-17) + a(n-18) - a(n-19) for n>19.
(End)