A292477 Square array A(n,k), n >= 0, k >= 2, read by antidiagonals: A(n,k) = [x^(k*n)] Product_{j>=0} 1/(1 - x^(k^j)).
1, 1, 2, 1, 2, 4, 1, 2, 3, 6, 1, 2, 3, 5, 10, 1, 2, 3, 4, 7, 14, 1, 2, 3, 4, 6, 9, 20, 1, 2, 3, 4, 5, 8, 12, 26, 1, 2, 3, 4, 5, 7, 10, 15, 36, 1, 2, 3, 4, 5, 6, 9, 12, 18, 46, 1, 2, 3, 4, 5, 6, 8, 11, 15, 23, 60, 1, 2, 3, 4, 5, 6, 7, 10, 13, 18, 28, 74, 1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 21, 33, 94
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, ... 4, 3, 3, 3, 3, 3, ... 6, 5, 4, 4, 4, 4, ... 10, 7, 6, 5, 5, 5, ... 14, 9, 8, 7, 6, 6, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- George E. Andrews, Aviezri S. Fraenkel, James A. Sellers, Characterizing the number of m-ary partitions modulo m, Amer. Math. Monthly 122:9 (2015), 880-885.
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Product[1/(1 - x^k^i), {i, 0, n}], {x, 0, k n}]][j - n + 2], {j, 0, 12}, {n, 0, j}] // Flatten
Comments