A294344 a(n) = ((-9*n + 82)*10^n - 1)/81.
1, 9, 79, 679, 5679, 45679, 345679, 2345679, 12345679, 12345679, -987654321, -20987654321, -320987654321, -4320987654321, -54320987654321, -654320987654321, -7654320987654321, -87654320987654321, -987654320987654321, -10987654320987654321, -120987654320987654321
Offset: 0
Examples
Curious multiplications:
9 * 8 = 72;
79 * 8 = 632;
679 * 8 = 5432;
5679 * 8 = 45432;
45679 * 8 = 365432;
345679 * 8 = 2765432;
2345679 * 8 = 18765432.
9 * 9 = 81;
79 * 9 = 711;
679 * 9 = 6111;
5679 * 9 = 51111;
45679 * 9 = 411111;
345679 * 9 = 3111111;
2345679 * 9 = 21111111.
Links
- Colin Barker, Table of n, a(n) for n = 0..900
- Index entries for linear recurrences with constant coefficients, signature (21,-120,100).
Crossrefs
Cf. A294328.
Programs
-
Mathematica
LinearRecurrence[{21,-120,100},{1,9,79},30] (* Harvey P. Dale, Mar 12 2018 *) -
PARI
Vec((1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2) + O(x^30)) \\ Colin Barker, Oct 29 2017
Formula
From Colin Barker, Oct 29 2017: (Start)
G.f.: (1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)