A294402
E.g.f.: exp(-Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, -1, -3, -1, 1, 279, 301, 12263, 5601, -431281, -2140739, -77720721, -1755429983, -12569445721, 85768062381, -4458503862121, 43351731658561, 546719071653663, 31735514726673661, 291860504886837599, 5860390638855992001, 208620917963122666679
Offset: 0
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0),
A294403 (k=1),
A294404 (k=2).
A294403
E.g.f.: exp(-Sum_{n>=1} sigma(n) * x^n).
Original entry on oeis.org
1, -1, -5, -7, 1, 839, 4171, 54305, 102817, -4303441, -74521349, -1595325271, -20768141855, -222701825737, 1485790534411, 65580347824529, 2880129557707201, 67631429234674655, 1543424936566399867, 23542870556917468889, 119940955037901088321
Offset: 0
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n):
A294402 (k=0), this sequence (k=1),
A294404 (k=2).
A294951
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(-Sum_{j>=1} sigma_k(j) * x^j).
Original entry on oeis.org
1, 1, -1, 1, -1, -3, 1, -1, -5, -1, 1, -1, -9, -7, 1, 1, -1, -17, -31, 1, 279, 1, -1, -33, -115, -23, 839, 301, 1, -1, -65, -391, -215, 3399, 4171, 12263, 1, -1, -129, -1267, -1319, 17519, 41311, 54305, 5601, 1, -1, -257, -3991, -6839, 102999, 387031, 473129, 102817, -431281
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
-3, -5, -9, -17, -33, ...
-1, -7, -31, -115, -391, ...
1, 1, -23, -215, -1319, ...
279, 839, 3399, 17519, 102999, ...
Showing 1-3 of 3 results.