cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A294139 Sum of the areas of the distinct rectangles (and the areas of the squares on their sides) with positive integer sides such that L + W = n, W < L.

Original entry on oeis.org

0, 0, 12, 23, 70, 105, 210, 282, 468, 590, 880, 1065, 1482, 1743, 2310, 2660, 3400, 3852, 4788, 5355, 6510, 7205, 8602, 9438, 11100, 12090, 14040, 15197, 17458, 18795, 21390, 22920, 25872, 27608, 30940, 32895, 36630, 38817, 42978, 45410, 50020, 52710, 57792
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 31 2017

Keywords

Crossrefs

Cf. A294473.

Programs

  • Magma
    [n*(4-21*n+12*n^2-5*n*(-1)^n)/16 : n in [1..60]]; // Wesley Ivan Hurt, Dec 02 2023
  • Mathematica
    Table[ Sum[2 i^2 + 2 (n - i)^2 + i (n - i), {i, Floor[(n-1)/2]}], {n, 40}]

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} 2*i^2 + 2*(n-i)^2 + i*(n-i).
Conjectures from Colin Barker, Nov 01 2017: (Start)
G.f.: x^3*(12 + 11*x + 11*x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3).
a(n) = n*(6*n - 1)*(n - 2) / 8 for n even.
a(n) = n*(3*n - 1)*(n - 1) / 4 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. (End)
a(n) = n*(4-21*n+12*n^2-5*n*(-1)^n)/16. - Wesley Ivan Hurt, Dec 02 2023
The first three conjectures of Barker are true. See links. - Sela Fried, Aug 11 2024.

Extensions

Signature for linear recurrence taken from first formula in formula section.
Showing 1-1 of 1 results.