A294508 Regular triangular array read by rows: T(n,m) = pi(n*m) - pi(n)*pi(m) for n > 0 and 0 < m <= n.
0, 1, 1, 2, 1, 0, 2, 2, 1, 2, 3, 1, 0, 2, 0, 3, 2, 1, 3, 1, 2, 4, 2, 0, 1, -1, 1, -1, 4, 2, 1, 3, 0, 3, 0, 2, 4, 3, 1, 3, 2, 4, 2, 4, 6, 4, 4, 2, 4, 3, 5, 3, 6, 8, 9, 5, 3, 1, 4, 1, 3, 1, 3, 5, 9, 5, 5, 4, 1, 5, 2, 5, 3, 4, 8, 10, 7, 9, 6, 3, 0, 3, 0, 3, 0, 3, 6, 7, 4, 6, 3, 6, 3, 1, 4, 1, 5, 1, 5, 6, 10, 6, 9, 6, 8
Offset: 1
Examples
a(19) = 3 since 19 = 5*6/2 + 4, so the 19th term is T(6,4) = pi(6*4) - pi(6)*pi(4) = 9 - 3*2 = 3. Triangular array begins: n\ m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 0 2 1 1 3 2 1 0 4 2 2 1 2 5 3 1 0 2 0 6 3 2 1 3 1 2 7 4 2 0 1 -1 1 -1 8 4 2 1 3 0 3 0 2 9 4 3 1 3 2 4 2 4 6 10 4 4 2 4 3 5 3 6 8 9 11 5 3 1 4 1 3 1 3 5 9 5 12 5 4 1 5 2 5 3 4 8 10 7 9 13 6 3 0 3 0 3 0 3 6 7 4 6 3 14 6 3 1 4 1 5 1 5 6 10 6 9 6 8 15 6 4 2 5 3 6 3 6 8 11 8 11 8 10 12
Links
- Gabriel Mincu and Laurentiu Panaitopol, Properties of some functions connected to prime numbers, J. Inequal. Pure Appl. Math., 9 No. 1 (2008), Art. 12.
Programs
-
Mathematica
t[n_, m_] := PrimePi[n*m] - PrimePi[n]*PrimePi[m]; Table[ t[n, m], {n, 13}, {m, n}] // Flatten
-
PARI
T(n,m) = primepi(n*m) - primepi(n)*primepi(m); tabl(nn) = for (n=1, nn, for (m=1, n, print1(T(n,m), ", ")); print); \\ Michel Marcus, Nov 08 2017
Comments