cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A295357 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 5, 20, 42, 83, 149, 259, 438, 730, 1204, 1973, 3219, 5237, 8504, 13792, 22350, 36200, 58612, 94878, 153559, 248509, 402143, 650730, 1052954, 1703768, 2756809, 4460667, 7217569, 11678332, 18896000, 30574434, 49470539
Offset: 0

Views

Author

Clark Kimberling, Nov 21 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Guide to related sequences:
***** Part 1: initial values are a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6
A295357: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + b(n-3)
A295358: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - b(n-3)
A295359: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 2*b(n-3)
A295360: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 3*b(n-3)
A295361: a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2) - 3*b(n-3)
A295362: a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) - b(n-3)
***** Part 2: initial values as shown
A295363: a(n) = a(n-1) + a(n-2) + b(n-1)*b(n-2); a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295364: a(n) = a(n-1) + a(n-2) + b(n-1)*b(n-2); a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4
A295365: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + b(n-3); a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6
A295366: a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - b(n-3); a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6
A295367: a(n) = a(n-1) + a(n-2) + b(n-1)*b(n-2); a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
For all of these sequences, a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that
b(3) = 7 (least "new number")
a(3) = a(1) + a(0) + b(2) + b(1) + b(0) = 20
Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + b[n - 3];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    z = 32; u = Table[a[n], {n, 0, z}]   (* A295357 *)
    v = Table[b[n], {n, 0, 10}]  (* complement *)

A294541 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 7, 14, 27, 49, 85, 144, 240, 396, 649, 1060, 1725, 2802, 4545, 7366, 11931, 19318, 31271, 50612, 81907, 132544, 214477, 347049, 561555, 908634, 1470220, 2378886, 3849139, 6228059, 10077233, 16305328, 26382598, 42687964, 69070601, 111758605
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) = 7;
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294541 *)
    Table[b[n], {n, 0, 10}]

A294546 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 19, 38, 69, 121, 207, 347, 575, 945, 1545, 2517, 4091, 6639, 10763, 17438, 28239, 45717, 73998, 119759, 193803, 313610, 507463, 821125, 1328642, 2149823, 3478523, 5628406, 9106991, 14735461, 23842518, 38578047, 62420635, 100998755, 163419465
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 2 = 9.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294546 *)
    Table[b[n], {n, 0, 10}]

A294553 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 16, 31, 55, 96, 163, 272, 449, 736, 1201, 1954, 3174, 5149, 8345, 13517, 21886, 35428, 57340, 92795, 150163, 242987, 393180, 636198, 1029410, 1665641, 2695086, 4360764, 7055888, 11416691, 18472619, 29889351, 48362012, 78251406, 126613462
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(1) + b(0) + b(1) - 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294553 *)
    Table[b[n], {n, 0, 10}]

A294552 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 12, 26, 53, 97, 171, 292, 490, 812, 1336, 2186, 3563, 5793, 9403, 15246, 24702, 40004, 64765, 104831, 169661, 274560, 444292, 718927, 1163298, 1882307, 3045690, 4928085, 7973866, 12902045, 20876008, 33778153, 54654264, 88432523, 143086896, 231519531
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences, and a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
The sequence is also the solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 2n with initial values a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + b(0) + 2 = 12.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...).
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n;
    j = 1; While[j < 5, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]  (* A294552 *)
    Table[b[n], {n, 0, 20}] (* complement *)

Extensions

Edited by Clark Kimberling, Dec 21 2017

A294556 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 13, 28, 57, 104, 183, 312, 523, 866, 1423, 2327, 3792, 6164, 10004, 16219, 26277, 42553, 68890, 111506, 180462, 292037, 472571, 764683, 1237332, 2002097, 3239515, 5241701, 8481308, 13723104, 22204510, 35927715, 58132329, 94060151, 152192590, 246252854
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(1) + b(0) + 3 = 13
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n + 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294556 *)
    Table[b[n], {n, 0, 10}]

Extensions

Conjectured g.f. removed by Alois P. Heinz, Jun 25 2018
Definition corrected by Georg Fischer, Sep 27 2020

A294557 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 11, 24, 49, 90, 159, 272, 457, 759, 1250, 2046, 3336, 5425, 8807, 14281, 23140, 37476, 60674, 98211, 158949, 257228, 416249, 673552, 1089879, 1763512, 2853475, 4617074, 7470639, 12087806, 19558541, 31646446, 51205089, 82851640, 134056837, 216908588
Offset: 0

Views

Author

Clark Kimberling, Nov 15 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294557 *)
    Table[b[n], {n, 0, 10}]

Extensions

Definition corrected by Georg Fischer, Sep 27 2020

A294558 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 14, 31, 64, 118, 209, 358, 602, 999, 1644, 2690, 4386, 7133, 11580, 18778, 30427, 49278, 79782, 129141, 209008, 338238, 547339, 885674, 1433114, 2318893, 3752116, 6071122, 9823356, 15894601, 25718084, 41612816, 67331035, 108943990, 176275168, 285219305
Offset: 0

Views

Author

Clark Kimberling, Nov 16 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2*n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A294558 *)
    Table[b[n], {n, 0, 10}]

Extensions

Definition corrected by Georg Fischer, Sep 27 2020

A294549 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 21, 42, 76, 133, 226, 379, 627, 1030, 1683, 2741, 4454, 7227, 11715, 18978, 30731, 49750, 80524, 130319, 210890, 341258, 552199, 893510, 1445764, 2339331, 3785154, 6124546, 9909763, 16034374, 25944204, 41978647, 67922922, 109901642, 177824639
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 1 = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n + 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294549 *)
    Table[b[n], {n, 0, 10}]

A294533 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 1, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 7, 14, 27, 48, 84, 142, 237, 391, 641, 1046, 1703, 2766, 4487, 7272, 11779, 19072, 30873, 49968, 80865, 130858, 211749, 342634, 554412, 897076, 1451519, 2348627, 3800179, 6148840, 9949054, 16097930, 26047021, 42144989, 68192049, 110337078, 178529168
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 1 = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294533 *)
    Table[b[n], {n, 0, 10}]
Showing 1-10 of 34 results. Next