A295357
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 5, 20, 42, 83, 149, 259, 438, 730, 1204, 1973, 3219, 5237, 8504, 13792, 22350, 36200, 58612, 94878, 153559, 248509, 402143, 650730, 1052954, 1703768, 2756809, 4460667, 7217569, 11678332, 18896000, 30574434, 49470539
Offset: 0
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that
b(3) = 7 (least "new number")
a(3) = a(1) + a(0) + b(2) + b(1) + b(0) = 20
Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + b[n - 3];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
z = 32; u = Table[a[n], {n, 0, z}] (* A295357 *)
v = Table[b[n], {n, 0, 10}] (* complement *)
A294541
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 7, 14, 27, 49, 85, 144, 240, 396, 649, 1060, 1725, 2802, 4545, 7366, 11931, 19318, 31271, 50612, 81907, 132544, 214477, 347049, 561555, 908634, 1470220, 2378886, 3849139, 6228059, 10077233, 16305328, 26382598, 42687964, 69070601, 111758605
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) = 7;
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, ...).
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294541 *)
Table[b[n], {n, 0, 10}]
A294546
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 9, 19, 38, 69, 121, 207, 347, 575, 945, 1545, 2517, 4091, 6639, 10763, 17438, 28239, 45717, 73998, 119759, 193803, 313610, 507463, 821125, 1328642, 2149823, 3478523, 5628406, 9106991, 14735461, 23842518, 38578047, 62420635, 100998755, 163419465
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 2 = 9.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...).
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294546 *)
Table[b[n], {n, 0, 10}]
A294553
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 8, 16, 31, 55, 96, 163, 272, 449, 736, 1201, 1954, 3174, 5149, 8345, 13517, 21886, 35428, 57340, 92795, 150163, 242987, 393180, 636198, 1029410, 1665641, 2695086, 4360764, 7055888, 11416691, 18472619, 29889351, 48362012, 78251406, 126613462
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + b(1) - 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294553 *)
Table[b[n], {n, 0, 10}]
A294552
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 12, 26, 53, 97, 171, 292, 490, 812, 1336, 2186, 3563, 5793, 9403, 15246, 24702, 40004, 64765, 104831, 169661, 274560, 444292, 718927, 1163298, 1882307, 3045690, 4928085, 7973866, 12902045, 20876008, 33778153, 54654264, 88432523, 143086896, 231519531
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + b(0) + 2 = 12.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...).
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n;
j = 1; While[j < 5, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}] (* A294552 *)
Table[b[n], {n, 0, 20}] (* complement *)
A294556
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 13, 28, 57, 104, 183, 312, 523, 866, 1423, 2327, 3792, 6164, 10004, 16219, 26277, 42553, 68890, 111506, 180462, 292037, 472571, 764683, 1237332, 2002097, 3239515, 5241701, 8481308, 13723104, 22204510, 35927715, 58132329, 94060151, 152192590, 246252854
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + 3 = 13
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294556 *)
Table[b[n], {n, 0, 10}]
A294557
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 11, 24, 49, 90, 159, 272, 457, 759, 1250, 2046, 3336, 5425, 8807, 14281, 23140, 37476, 60674, 98211, 158949, 257228, 416249, 673552, 1089879, 1763512, 2853475, 4617074, 7470639, 12087806, 19558541, 31646446, 51205089, 82851640, 134056837, 216908588
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294557 *)
Table[b[n], {n, 0, 10}]
A294558
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 14, 31, 64, 118, 209, 358, 602, 999, 1644, 2690, 4386, 7133, 11580, 18778, 30427, 49278, 79782, 129141, 209008, 338238, 547339, 885674, 1433114, 2318893, 3752116, 6071122, 9823356, 15894601, 25718084, 41612816, 67331035, 108943990, 176275168, 285219305
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2*n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A294558 *)
Table[b[n], {n, 0, 10}]
A294549
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 10, 21, 42, 76, 133, 226, 379, 627, 1030, 1683, 2741, 4454, 7227, 11715, 18978, 30731, 49750, 80524, 130319, 210890, 341258, 552199, 893510, 1445764, 2339331, 3785154, 6124546, 9909763, 16034374, 25944204, 41978647, 67922922, 109901642, 177824639
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 1 = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294549 *)
Table[b[n], {n, 0, 10}]
A294533
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 1, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 7, 14, 27, 48, 84, 142, 237, 391, 641, 1046, 1703, 2766, 4487, 7272, 11779, 19072, 30873, 49968, 80865, 130858, 211749, 342634, 554412, 897076, 1451519, 2348627, 3800179, 6148840, 9949054, 16097930, 26047021, 42144989, 68192049, 110337078, 178529168
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 1 = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294533 *)
Table[b[n], {n, 0, 10}]
Showing 1-10 of 34 results.
Comments