cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294532 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 6, 12, 23, 42, 73, 124, 207, 342, 562, 918, 1495, 2429, 3941, 6388, 10348, 16756, 27125, 43903, 71052, 114980, 186058, 301065, 487151, 788245, 1275426, 2063702, 3339160, 5402895, 8742089, 14145019, 22887144, 37032200, 59919382, 96951621, 156871043
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values, which, for the sequences in the following guide, are a(0) = 1, a(1) = 2, b(0) = 3:
a(n) = a(n-1) + a(n-2) + b(n-2) A294532
a(n) = a(n-1) + a(n-2) + b(n-2) + 1 A294533
a(n) = a(n-1) + a(n-2) + b(n-2) + 2 A294534
a(n) = a(n-1) + a(n-2) + b(n-2) + 3 A294535
a(n) = a(n-1) + a(n-2) + b(n-2) - 1 A294536
a(n) = a(n-1) + a(n-2) + b(n-2) + n A294537
a(n) = a(n-1) + a(n-2) + b(n-2) + 2n A294538
a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1 A294539
a(n) = a(n-1) + a(n-2) + b(n-2) + 2n - 1 A294540
a(n) = a(n-1) + a(n-2) + b(n-1) A294541
a(n) = a(n-1) + a(n-2) + b(n-1) + 1 A294542
a(n) = a(n-1) + a(n-2) + b(n-1) + 2 A294543
a(n) = a(n-1) + a(n-2) + b(n-1) + 3 A294544
a(n) = a(n-1) + a(n-2) + b(n-1) - 1 A294545
a(n) = a(n-1) + a(n-2) + b(n-1) + n A294546
a(n) = a(n-1) + a(n-2) + b(n-1) + 2n A294547
a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1 A294548
a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1 A294549
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) A294550
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1 A294551
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n A294552
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n A294553
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2 A294554
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3 A294555
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1 A294556
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1 A294557
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2n A294558
a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2) A294559
a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2) A294560
a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2) A294561
a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1 A294562
a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n A294563
a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1 A294564
a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 3 A294565
Conjecture: for every sequence listed here, a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(0) + a(1) + b(0) = 6
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294532 *)
    Table[b[n], {n, 0, 10}]

A296499 Decimal expansion of ratio-sum for A294546; see Comments.

Original entry on oeis.org

4, 7, 3, 7, 0, 5, 7, 9, 9, 8, 7, 9, 2, 2, 1, 7, 3, 6, 5, 4, 2, 8, 3, 7, 5, 6, 2, 1, 2, 9, 5, 7, 5, 9, 3, 2, 6, 1, 5, 9, 9, 7, 6, 5, 8, 7, 3, 4, 7, 0, 8, 6, 3, 7, 1, 7, 7, 5, 2, 1, 0, 2, 1, 6, 1, 5, 6, 0, 8, 0, 6, 4, 2, 9, 2, 6, 8, 7, 9, 3, 8, 1, 7, 1, 5, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294546, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			4.737057998792217365428375621295759326159...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294549 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296499 *)
Showing 1-2 of 2 results.