A294605 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j*x^j)^(j^(k*j)) in powers of x.
1, 1, -1, 1, -1, -2, 1, -1, -8, -1, 1, -1, -32, -73, -1, 1, -1, -128, -2155, -919, 5, 1, -1, -512, -58921, -259477, -13977, 1, 1, -1, -2048, -1593811, -67041751, -48496477, -253640, 13, 1, -1, -8192, -43044673, -17178144301, -152513231553, -13001163543, -5290184, 4
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, ... -2, -8, -32, -128, -512, ... -1, -73, -2155, -58921, -1593811, ... -1, -919, -259477, -67041751, -17178144301, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..52, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k*d+1+j/d)) * A(n-j,k) for n > 0.