A294609
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-j*x^j)^(j^(k*j)) in powers of x.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 9, 6, 1, 1, 33, 90, 14, 1, 1, 129, 2220, 1154, 25, 1, 1, 513, 59178, 264908, 17427, 56, 1, 1, 2049, 1594836, 67176362, 49163017, 309117, 97, 1, 1, 8193, 43048770, 17181595604, 152662625259, 13120646934, 6285102, 198
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 9, 33, 129, 513, ...
6, 90, 2220, 59178, 1594836, ...
14, 1154, 264908, 67176362, 17181595604, ...
A294606
Expansion of Product_{k>=1} (1 - k*x^k)^(k^k).
Original entry on oeis.org
1, -1, -8, -73, -919, -13977, -253640, -5290184, -124681406, -3272865905, -94671665085, -2991846831531, -102566663464544, -3791541404744714, -150357943095635464, -6367699625807475503, -286854179220742344135, -13697182490105378305606
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 - k*x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k^k))
A294607
Expansion of Product_{k>=1} (1 - k*x^k)^(k^(2*k)).
Original entry on oeis.org
1, -1, -32, -2155, -259477, -48496477, -13001163543, -4732376829091, -2246495500625034, -1348407234549297356, -998562296547665810106, -894380299878766527522232, -953030926136814034550634393, -1191548000252369142490485950437
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 - k*x^k)^(k^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)
-
N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k^(2*k)))
Showing 1-3 of 3 results.