A294605
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1-j*x^j)^(j^(k*j)) in powers of x.
Original entry on oeis.org
1, 1, -1, 1, -1, -2, 1, -1, -8, -1, 1, -1, -32, -73, -1, 1, -1, -128, -2155, -919, 5, 1, -1, -512, -58921, -259477, -13977, 1, 1, -1, -2048, -1593811, -67041751, -48496477, -253640, 13, 1, -1, -8192, -43044673, -17178144301, -152513231553, -13001163543, -5290184, 4
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
-2, -8, -32, -128, -512, ...
-1, -73, -2155, -58921, -1593811, ...
-1, -919, -259477, -67041751, -17178144301, ...
A294950
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-j^(k*j)*x^j)^j in powers of x.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 9, 6, 1, 1, 33, 90, 13, 1, 1, 129, 2220, 1162, 24, 1, 1, 513, 59178, 265132, 17435, 48, 1, 1, 2049, 1594836, 67180330, 49163241, 310193, 86, 1, 1, 8193, 43048770, 17181660628, 152662629227, 13121450895, 6286826, 160
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 9, 33, 129, 513, ...
6, 90, 2220, 59178, 1594836, ...
13, 1162, 265132, 67180330, 17181660628, ...
24, 17435, 49163241, 152662629227, 476855156157129, ...
A294610
Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^k).
Original entry on oeis.org
1, 1, 9, 90, 1154, 17427, 309117, 6285102, 144603015, 3717580810, 105696353842, 3293810230381, 111651093529948, 4089889271054734, 160989247361249558, 6776381334102511286, 303712681809603918633, 14439887378431671417669
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)
-
N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k*x^k)^k^k))
A294611
Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^(2*k)).
Original entry on oeis.org
1, 1, 33, 2220, 264908, 49163017, 13120646934, 4762819155533, 2257121941722156, 1353302171994081060, 1001440370811165212942, 896481721940248699989226, 954894511643935287905899347, 1193519554843091905978411389666
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^(k^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)
-
N=20; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k*x^k)^k^(2*k)))
Showing 1-4 of 4 results.