A294617 Number of ways to choose a set partition of a strict integer partition of n.
1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0
Keywords
Examples
The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, combinat[bell](t), b(n, i-1, t)+ `if`(i>n, 0, b(n-i, min(n-i, i-1), t+1)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..50); # Alois P. Heinz, Nov 07 2017
-
Mathematica
Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}] (* Second program: *) b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]]; a[n_] := b[n, n, 0]; a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=0} Bell(k) * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020
Comments