A294621 Number of partitions of n into generalized heptagonal numbers (A085787).
1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 26, 29, 32, 35, 38, 41, 45, 49, 53, 59, 64, 69, 73, 80, 87, 94, 101, 109, 117, 125, 134, 145, 156, 167, 178, 190, 202, 217, 232, 249, 265, 282, 299, 318, 339, 361, 384, 408, 432, 457, 484, 514, 545, 578, 610, 646
Offset: 0
Keywords
Examples
a(8) = 4 because we have [7, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
Links
- Eric Weisstein's World of Mathematics, Heptagonal Number
- Index to sequences related to polygonal numbers
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 70; CoefficientList[Series[Product[1/((1 - x^(k (5 k - 3)/2)) (1 - x^(k (5 k + 3)/2))), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/((1 - x^(k*(5*k-3)/2))*(1 - x^(k*(5*k+3)/2))).