cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294638 E.g.f. satisfies: A'(x) = A(x) * A(x^2).

Original entry on oeis.org

1, 1, 1, 3, 9, 33, 153, 963, 6129, 47457, 393489, 3689379, 36673209, 410924097, 4810169961, 64694478627, 878318278497, 13230037503297, 203967546446241, 3494178651687363, 60117798742663401, 1137159539308348641, 21683284489630748601, 452680959717183978243, 9454328250188008785489, 214087305044257976127393, 4862802200825123466537393, 119970186740330465448543843, 2944202974922987534742898329
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 33*x^5/5! + 153*x^6/6! + 963*x^7/7! + 6129*x^8/8! + 47457*x^9/9! + 393489*x^10/10! + 3689379*x^11/11! + 36673209*x^12/12! + 410924097*x^13/13! + 4810169961*x^14/14! + 64694478627*x^15/15! + 878318278497*x^16/16! + 13230037503297*x^17/17! + 203967546446241*x^18/18! + 3494178651687363*x^19/19! + ...
such that A'(x) = A(x) * A(x^2).
Also, A(x) = exp( Integral A(x^2) dx ).
RELATED SERIES.
The logarithm of the e.g.f. is an odd function that begins:
log(A(x)) = x + x^3/3 + x^5/(5*2!) + 3*x^7/(7*3!) + 9*x^9/(9*4!) + 33*x^11/(11*5!) + 153*x^13/(13*6!) + 963*x^15/(15*7!) + 6129*x^17/(17*8!) + 47457*x^19/(19*9!) + 393489*x^21/(21*10!) +...+ a(n) * x^(2*n+1)/((2*n+1)*n!) +...
which equals Integral A(x^2) dx.
Explicitly,
log(A(x)) = x + 2*x^3/3! + 12*x^5/5! + 360*x^7/7! + 15120*x^9/9! + 997920*x^11/11! + 101787840*x^13/13! + 16657280640*x^15/15! + 3180450873600*x^17/17! + 837294557299200*x^19/19! +...+ (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! +...
		

Crossrefs

Cf. A138292.

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,#binary(n+1), A = exp( intformal( subst(A,x,x^2) +x*O(x^n)) ) ); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! satisfies:
(1) A(x) = exp( Integral A(x^2) dx ).
(2) A(x) = 1/A(-x).
(3) A(x) = exp( Sum_{n>=0} a(n) * x^(2*n+1) / ((2*n+1)*n!) ) .
(4) A(x) = exp( Sum_{n>=0} (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! ).