cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A294785 E.g.f. A(x) satisfies: A(x) = A(x^2) * exp( Integral A(x^2) dx ).

Original entry on oeis.org

1, 1, 3, 9, 57, 297, 2187, 15921, 181233, 1731249, 20741139, 241294329, 3524256297, 49123306521, 781173645723, 12522002462433, 247000850880993, 4516315005395169, 92648539990208547, 1886480713319540841, 43524900326040674841, 986331301183882645641, 24094409085348757028523, 596222660659090240456209, 16242798073806940474325457, 438933088683325211888103057, 12586136448791084548892537907
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 9*x^3/3! + 57*x^4/4! + 297*x^5/5! + 2187*x^6/6! + 15921*x^7/7! + 181233*x^8/8! + 1731249*x^9/9! + 20741139*x^10/10! + 241294329*x^11/11! + 3524256297*x^12/12! + 49123306521*x^13/13! + 781173645723*x^14/14! + 12522002462433*x^15/15! + 247000850880993*x^16/16! +...
such that A(x) = A(x^2) * exp( Integral A(x^2) dx ).
Also,
A(x) = B(x) * B(x^2) * B(x^4) * B(x^8) * B(x^16) *...* B(x^(2^n)) *...
where B(x) = 1 + Integral A(x) dx.
Further,
A'(x)/A(x) = A(x^2) + 2*x*A(x^4) + 4*x^3*A(x^8) + 8*x^7*A(x^16) + 16*x^15*A(x^32) + 32*x^31*A(x^64) +...+ 2^n * x^(2^n-1) * A(x^(2^(n+1))) +...
RELATED SERIES.
E.g.f. A(x) as a series with reduced fractional coefficients begins:
A(x) = 1 + x + 3/2*x^2 + 3/2*x^3 + 19/8*x^4 + 99/40*x^5 + 243/80*x^6 + 1769/560*x^7 + 20137/4480*x^8 + 192361/40320*x^9 + 2304571/403200*x^10 + 8936827/1478400*x^11 + 43509337/5913600*x^12 + 1819381723/230630400*x^13 + 3214706361/358758400*x^14 + 51530874331/5381376000*x^15 + 277217565523/23482368000*x^16 +...
The logarithm of the e.g.f. begins:
log(A(x)) = x + x^2 + 1/3*x^3 + x^4 + 3/10*x^5 + 1/3*x^6 + 3/14*x^7 + x^8 + 19/72*x^9 + 3/10*x^10 + 9/40*x^11 + 1/3*x^12 + 243/1040*x^13 + 3/14*x^14 + 1769/8400*x^15 + x^16 + 20137/76160*x^17 + 19/72*x^18 + 192361/766080*x^19 + 3/10*x^20 + 2304571/8467200*x^21 + 9/40*x^22 + 8936827/34003200*x^23 + 1/3*x^24 + 43509337/147840000*x^25 + 243/1040*x^26 + 1819381723/6227020800*x^27 + 3/14*x^28 + 3214706361/10403993600*x^29 + 1769/8400*x^30 + 51530874331/166822656000*x^31 + x^32 +...
The logarithmic derivative of the e.g.f. begins:
A'(x)/A(x) = 1 + 2*x + x^2 + 4*x^3 + 3/2*x^4 + 2*x^5 + 3/2*x^6 + 8*x^7 + 19/8*x^8 + 3*x^9 + 99/40*x^10 + 4*x^11 + 243/80*x^12 + 3*x^13 + 1769/560*x^14 + 16*x^15 + 20137/4480*x^16 +...
where A'(x)/A(x) = A(x^2) + 2*x * A'(x^2)/A(x^2).
The following series demonstrates an important property of the e.g.f.:
A(x)/A(x^2) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 57*x^5/5! + 297*x^6/6! + 2187*x^7/7! + 15921*x^8/8! + 181233*x^9/9! +...+ a(n)*x^(n+1)/(n+1)! +...
where A(x)/A(x^2) = 1 + Integral A(x) dx.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, #binary(n+1), A = subst(A, x, x^2) * exp( intformal( subst(A, x, x^2) +x*O(x^n))) ); n!*polcoeff(H=A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f. satisfies:
(1) exp( Integral A(x^2) dx ) = 1 + Integral A(x) dx.
(2) A(x)/A(x^2) = 1 + Integral A(x) dx.
(3) A(x) = Product_{n>=0} B( x^(2^n) ) where B(x) = 1 + Integral A(x) dx.
(4) A'(x)/A(x) = A(x^2) + 2*x * A'(x^2)/A(x^2).
(5) A'(x)/A(x) = Sum_{n>=0} 2^n * x^(2^n-1) * A( x^(2^(n+1)) ).
Showing 1-1 of 1 results.