cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297358 Numbers m such that the denominator of m/rho(m) is 3, where rho is A206369; i.e. A294649(m) = 3.

Original entry on oeis.org

4, 14, 20, 84, 280, 672, 3360, 4200, 4214, 6160, 25284, 36960, 46200, 57792, 76160, 84280, 92400, 202272, 288960, 308700, 656640, 1011360, 1142400, 1264200, 1854160, 2469600, 3178560, 11124960, 12566400, 13906200, 22924160, 27812400, 107557632, 120165120, 212385600
Offset: 1

Views

Author

Michel Marcus, Dec 29 2017

Keywords

Comments

The least instances for 4/3, 5/3, 7/3, 8/3, 10/3 and 11/3 are: 4, 20, 14, 672, 3360, 36960.
Then candidates for 13/3 and 14/3 are 54269201896764616671660406473798293913600000 and 23101697828019582727957348094429256309828763084415991060514234912131560924774400000000.

Examples

			4 is a term because 4/A206369(4) = 4/3.
14 is a term because 14/A206369(14) = 14/6 = 7/3.
		

Crossrefs

Cf. A206369 (rho), A294649, A295236 (analog with 2 instead of 3).
Cf. A245775 (analog for sigma).

Programs

  • Mathematica
    Select[Range[10^5], Denominator[#/(# DivisorSum[#, LiouvilleLambda[#]/# &])] == 3 &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s;
    rho(n) = my(f=factor(n)); prod(i=1, #f~, rhope(f[i, 1], f[i, 2]));
    isok(n) = denominator(n/rho(n))==3;

Extensions

a(33)-a(35) from Jinyuan Wang, Feb 10 2020

A294650 a(n) = denominator(A206369(n))/n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 2, 13, 7, 15, 16, 17, 18, 19, 5, 7, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 32, 33, 17, 35, 12, 37, 19, 13, 2, 41, 7, 43, 22, 45, 23, 47, 24, 49, 50, 51, 13, 53, 27, 11, 28, 19, 29, 59, 5, 61, 31, 3, 64, 65, 33, 67, 17, 69, 35
Offset: 1

Views

Author

Michel Marcus, Nov 06 2017

Keywords

Crossrefs

Cf. A127724 (k-imperfect), A206369, A294649 (numerator).
A225680 is a subsequence (on squarefree indices). - Michel Marcus, Dec 22 2017

Programs

  • Mathematica
    (* b = A209369 *) b[n_] := n*DivisorSum[n, LiouvilleLambda[#]/# &];
    a[n_] := Denominator[b[n]/n];
    Array[a, 100] (* Jean-François Alcover, Dec 04 2017 *)
  • PARI
    rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s;
    rho(n) = my(f=factor(n)); prod(i=1, #f~, rhope(f[i, 1], f[i, 2]));
    a(n) = denominator(rho(n)/n);
Showing 1-2 of 2 results.