A297358 Numbers m such that the denominator of m/rho(m) is 3, where rho is A206369; i.e. A294649(m) = 3.
4, 14, 20, 84, 280, 672, 3360, 4200, 4214, 6160, 25284, 36960, 46200, 57792, 76160, 84280, 92400, 202272, 288960, 308700, 656640, 1011360, 1142400, 1264200, 1854160, 2469600, 3178560, 11124960, 12566400, 13906200, 22924160, 27812400, 107557632, 120165120, 212385600
Offset: 1
Keywords
Examples
4 is a term because 4/A206369(4) = 4/3. 14 is a term because 14/A206369(14) = 14/6 = 7/3.
Crossrefs
Programs
-
Mathematica
Select[Range[10^5], Denominator[#/(# DivisorSum[#, LiouvilleLambda[#]/# &])] == 3 &] (* Michael De Vlieger, Dec 29 2017 *)
-
PARI
rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s; rho(n) = my(f=factor(n)); prod(i=1, #f~, rhope(f[i, 1], f[i, 2])); isok(n) = denominator(n/rho(n))==3;
Extensions
a(33)-a(35) from Jinyuan Wang, Feb 10 2020
Comments