A294685 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly three colors under translational symmetry, 1 <= k <= n.
0, 0, 9, 2, 91, 2022, 9, 738, 43315, 2679246, 30, 5613, 950062, 174184755, 33887517990, 91, 43404, 21480921, 11765865678, 6862930841141, 4169289730628814, 258, 338259, 497812638, 816999710223, 1429469771994078, 2605213713043722909, 4883659745750360600262, 729, 2679228, 11765822365, 57906482267826, 303941554100145501
Offset: 1
Examples
Triangle begins: 0; 0, 9; 2, 91, 2022; 9, 738, 43315, 2679246; 30, 5613, 950062, 174184755, 33887517990; 91, 43404, 21480921, 11765865678, 6862930841141, 4169289730628814; ...
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..820 (first 40 rows)
- Marko Riedel et al., Burnside lemma and translational symmetries of the torus.
Crossrefs
Programs
-
PARI
T(n,m)=6*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), 3, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024
Formula
T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=3 and S(n,k) Stirling numbers of the second kind.
Comments