A294776 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 6.
1616615, 3411705, 7436429, 9408035, 10163195, 12838371, 13037385, 13844919, 14969435, 19605131, 20414121, 23783045, 24997749, 25113935, 27568145, 30478565, 31473255, 32518535, 33999455, 39946569, 43134015, 46115135, 48215255, 50907855, 56179409, 61558343
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,n,ok; for n from 2*3*5*7*11*13 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2]; if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1; for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,6); # Alternative: N:= 10^8: # to get all terms <= N M:= floor(fsolve(3*5*7*(M-7)*(M-5)*(M-3) = N)): P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P): Res:= NULL: for m from 10 by 2 to M do for ix from 1 to nP-2 do x:= P[ix]; if x >= m/2 or (x*(m-x))^3 >= N then break fi; if not isprime(m-x) then next fi; for iy from ix+1 to nP-1 do y:= P[iy]; if y >= m/2 or x*(m-x)*(y*(m-y))^2 >= N then break fi; if not isprime(m-y) then next fi; for iz from iy+1 to nP do z:= P[iz]; if z >= m/2 then break fi; v:= x*(m-x)*y*(m-y)*z*(m-z); if v > N then break fi; if isprime(m-z) then Res:= Res, v fi; od od od od: sort([Res]); # Robert Israel, May 19 2019
-
PARI
isok(n, nb=6) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ Michel Marcus, Nov 10 2017
Extensions
More terms from Giovanni Resta, Nov 09 2017