A294783 Number of trees with n bicolored nodes and f nodes of the first color. Triangle T(n,f) read by rows, 0<=f<=n.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 6, 4, 2, 3, 9, 15, 15, 9, 3, 6, 20, 43, 51, 43, 20, 6, 11, 48, 116, 175, 175, 116, 48, 11, 23, 115, 329, 573, 698, 573, 329, 115, 23, 47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47, 106, 719, 2609, 5978, 9656, 11241, 9656, 5978, 2609, 719, 106, 235, 1842
Offset: 0
Examples
The triangle starts 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 2, 4, 6, 4, 2; 3, 9, 15, 15, 9, 3; 6, 20, 43, 51, 43, 20, 6; 11, 48, 116, 175, 175, 116, 48, 11; 23, 115, 329, 573, 698, 573, 329, 115, 23; 47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47; 106, 719,2609, 5978, 9656,11241, 9656,5978,2609,719,106; 235,1842,
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
Crossrefs
Programs
-
PARI
R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p,y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p,j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v;} M(n)={my(B=(1+y)*x*Ser(R(n,y))); 1 + B - (B^2 - substvec(B, [x,y], [x^2,y^2]))/2} { my(A=M(10)); for(n=0, #A-1, print(Vecrev(polcoeff(A, n)))) } \\ Andrew Howroyd, May 12 2018
Formula
T(n,f) = T(n,n-f), flipping all node colors.
Extensions
Row 10 completed. - R. J. Mathar, Apr 29 2018