cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A303833 Birooted trees: number of unlabeled trees with n nodes rooted at 2 indistinguishable roots.

Original entry on oeis.org

0, 1, 2, 6, 15, 43, 116, 329, 918, 2609, 7391, 21099, 60248, 172683, 495509, 1424937, 4102693, 11830006, 34148859, 98686001, 285459772, 826473782, 2394774727, 6944343654, 20151175658, 58513084011, 170007600051, 494230862633
Offset: 1

Views

Author

R. J. Mathar, Brendan McKay, May 01 2018

Keywords

Crossrefs

Subsets of graphs in A303831. Cf. A000243 (distinguishable roots), A000055 (not rooted).
Third column of A294783.

Programs

  • Maple
    a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597] ;
    g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
    g := 0 ;
    nmax := nops(a000081) ;
    for m from 0 to nmax do
        mhalf := floor(m/2) ;
        ghalf := g81^(mhalf+1) ;
        gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
        if type(m,odd) then
            gcyc := gcyc*g81 ;
        end if;
        g := g+gcyc ;
    end do:
    taylor(g,x=0,nmax) ;
    gfun[seriestolist](%) ; # R. J. Mathar, May 01 2018
  • PARI
    TreeGf is A000081 as g.f.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2)+O(x*x^n)); Vec((2*t^2-1)/(1-t) + (1+t)/(1-t2), -n)/2} \\ Andrew Howroyd, Dec 04 2020

Formula

G.f.: [g81(x)^2/{1-g81(x)} +(1+g81(x))*g81(x^2)/{1-g81(x^2)}] /2 = [ g243(x) +(1+g81(x))*g107(x^2)]/2, where g81 is the g.f. of A000081, g243 the g.f. of A000243 and g107 the g.f. of A000107. - R. J. Mathar, May 02 2018
a(n) = A027852(n) + A304067(n). - Brendan McKay, May 05 2018
a(n) = A303840(n+2) - A000081(n). - Andrew Howroyd, Dec 04 2020

A321304 Triangle T(n,f): the number of bicolored connected cubic graphs on 2n vertices with f vertices of the first color.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 5, 5, 5, 2, 2, 5, 10, 31, 46, 63, 46, 31, 10, 5, 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19, 85, 490, 2382, 7011, 15199, 23405, 27336, 23405, 15199, 7011, 2382, 490, 85, 509, 4595, 27233, 101002, 268675, 523246, 776657, 882321, 776657, 523246, 268675, 101002, 27233, 4595, 509
Offset: 0

Views

Author

R. J. Mathar, Nov 03 2018

Keywords

Comments

These are connected, undirected, simple cubic graphs where each vertex has either the first or the second color. Row n has 2n+1 entries, 0<=f<=2n. The column f=0 (1, 0, 2, 5,...) counts the cubic graphs (A002851). The column f=1 (0, 1, 2, 10, 64, 490...) counts the rooted cubic graphs.

Examples

			The triangle starts:
0 vertices:   1;
2 vertices:   0,  0,   0;
4 vertices:   1,  1,   1,   1,   1;
6 vertices:   2,  2,   5,   5,   5,    2,   2;
8 vertices:   5, 10,  31,  46,  63,   46,  31,  10,   5;
10 vertices: 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19;
		

Crossrefs

Columns f=0, 1, 2 are A002851, A361407, A361408.
Row sums are A361403.
Central coefficients are A361406.
Cf. A294783 (bicolored trees), A321305 (signed edges), A361361 (not necessarily connected).

Formula

T(n,f) = T(n,2n-f).

Extensions

Terms a(49) and beyond from Andrew Howroyd, Mar 11 2023

A038056 Number of trees with n 2-colored nodes.

Original entry on oeis.org

2, 3, 6, 18, 54, 189, 700, 2778, 11486, 49377, 217936, 984818, 4533004, 21198962, 100471862, 481754806, 2333465628, 11404047817, 56177574628, 278710061814, 1391617108600, 6988781174376, 35283390923324, 178990052273558, 912019786448570, 4665994686718118
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Cf. A000055, A038055-A038062. Row sums of A294783.

Formula

G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A038055.

A304311 Triangle T(n,k) read by rows: number of bicolored connected graphs with n nodes and k nodes of the first color.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 6, 11, 16, 11, 6, 21, 58, 98, 98, 58, 21, 112, 407, 879, 1087, 879, 407, 112, 853, 4306, 11260, 17578, 17578, 11260, 4306, 853, 11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117
Offset: 0

Views

Author

R. J. Mathar, May 10 2018

Keywords

Examples

			Triangle begins
      1;
      1,     1;
      1,     1,      1;
      2,     3,      3,      2;
      6,    11,     16,     11,      6;
     21,    58,     98,     98,     58,     21;
    112,   407,    879,   1087,    879,    407,    112;
    853,  4306,  11260,  17578,  17578,  11260,   4306,   853;
  11117, 72489, 230505, 436371, 537272, 436371, 230505, 72489, 11117;
		

Crossrefs

Cf. A054921 (row sums), A001349 (1st column), A126100 (2nd column), A303831 (3rd column), A294783 (trees).

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    S(n,y)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1,#p,1+y^p[i])); s/n!}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )}
    {my(A=InvEulerMT(vector(10, n, S(n,y)))); for(n=0, #A, for(k=0, n, print1(polcoeff(if(n,A[n],1), k), ", ")); print)} \\ Andrew Howroyd, May 13 2018

Formula

T(n,k) = T(n,n-k).

A304489 Triangle read by rows: T(n,k) = number of rooted signed trees with n nodes and k positive edges (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 9, 26, 37, 26, 9, 20, 75, 134, 134, 75, 20, 48, 214, 469, 596, 469, 214, 48, 115, 612, 1577, 2445, 2445, 1577, 612, 115, 286, 1747, 5204, 9480, 11513, 9480, 5204, 1747, 286, 719, 4995, 16865, 35357, 50363, 50363, 35357, 16865, 4995, 719
Offset: 1

Views

Author

Andrew Howroyd, May 13 2018

Keywords

Comments

Equivalently, the number of rooted trees with 2-colored non-root nodes, n nodes and k nodes of the first color.

Examples

			Triangle begins:
    1;
    1,    1;
    2,    3,    2;
    4,    9,    9,    4;
    9,   26,   37,   26,     9;
   20,   75,  134,  134,    75,   20;
   48,  214,  469,  596,   469,  214,   48;
  115,  612, 1577, 2445,  2445, 1577,  612,  115;
  286, 1747, 5204, 9480, 11513, 9480, 5204, 1747, 286;
  ...
		

Crossrefs

Row sums are A000151.
Columns k=0..1 are A000081, A000243.

Programs

  • PARI
    R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p, y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p, j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v; }
    { my(A=R(10,y)); for(n=1, #A, print(Vecrev(A[n]))) }
    
  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    R(n, y)={my(v=[1]); for(k=2,n,v=concat([1], EulerMT(v*(1+y)))); v}
    { my(A=R(10,y)); for(n=1, #A, print(Vecrev(A[n]))) }

A303843 The number of unlabeled trees with n nodes rooted at 3 indistinguishable roots.

Original entry on oeis.org

0, 0, 1, 4, 15, 51, 175, 573, 1866, 5978, 19000, 59859, 187503, 584012, 1811212, 5595239, 17228943, 52898764, 162013452, 495100454, 1510029296, 4597430832, 13975327501, 42422033217, 128606150706, 389423872694, 1177925775148, 3559477190797, 10746362772325
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Comments

A unique path exists between any two of the roots. These will intersect at a single vertex which might coincide with one of the original roots. This intersecting vertex can be chosen as a root to which the other trees are attached. - Andrew Howroyd, May 03 2018

Examples

			a(3)=1 (all nodes are roots). a(4)=4: the linear tree has the non-root node either at a leaf or not, and the star tree has the non-root node either at the center or at a leaf.
		

Crossrefs

4th column of A294783.
Cf. A000081 (1-rooted), A303833 (2-rooted).

Programs

  • Mathematica
    m = 30; T[_] = 0;
    Do[T[x_] = x Exp[Sum[T[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, m}];
    g[x_] = T[x]/(1 - T[x]) + O[x]^m // Normal;
    g[x]((g[x]^3 + 3g[x]g[x^2] + 2g[x^3] + 3g[x]^2 + 3g[x^2])/(6(1 + g[x]))) + O[x]^m // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 16 2020, after Andrew Howroyd *)
  • PARI
    \\ here TreeGf is gf of A000081
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n) = {my(T=TreeGf(n)); my(g=T/(1-T)); T*(g^3 + 3*subst(g,x,x^2)*g + 2*subst(g,x,x^3) + 3*g^2 + 3*subst(g,x,x^2))/6}
    concat([0,0], Vec(seq(30))) \\ Andrew Howroyd, May 03 2018

Formula

G.f.: g(x)*(g(x)^3 + 3*g(x)*g(x^2) + 2*g(x^3) + 3*g(x)^2 + 3*g(x^2))/(6*(1 + g(x))) where g(x) = T(x)/(1-T(x)) and T(x) is the g.f. of A000081. - Andrew Howroyd, May 03 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, May 03 2018
Showing 1-6 of 6 results.