cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A038055 Number of n-node rooted trees with nodes of 2 colors.

Original entry on oeis.org

2, 4, 14, 52, 214, 916, 4116, 18996, 89894, 433196, 2119904, 10503612, 52594476, 265713532, 1352796790, 6933598208, 35747017596, 185260197772, 964585369012, 5043220350012, 26467146038744, 139375369621960, 736229024863276, 3900074570513316, 20714056652990194
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Cf. A000081, A038056-A038062, A271878 (multisets).
Cf. A245870.

Programs

  • Maple
    spec := [N, {N=Prod(bead,Set(N)), bead=Union(R,B), R=Atom, B=Atom}]; [seq(combstruct[count](spec, size=n), n=1..40)];
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, 2*n, (add(add(d*
          a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, May 11 2014
  • Mathematica
    a[n_] := a[n] = If[n<2, 2*n, (Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
    a[1] = 2; a[n_] := a[n] = Sum[k a[k] a[n - m k]/(n-1), {k, n}, {m, (n-1)/k}]; Table[a[n], {n, 30}] (* Vladimir Reshetnikov, Aug 12 2016 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); 2*A} \\ Andrew Howroyd, May 12 2018

Formula

Shifts left and halves under Euler transform.
a(n) = 2*A000151(n).
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232949712892713516..., c = 0.41572319484583484264330698410170337587070758092051645875080558178621559423... . - Vaclav Kotesovec, Sep 11 2014, updated Dec 26 2020

A294783 Number of trees with n bicolored nodes and f nodes of the first color. Triangle T(n,f) read by rows, 0<=f<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 6, 4, 2, 3, 9, 15, 15, 9, 3, 6, 20, 43, 51, 43, 20, 6, 11, 48, 116, 175, 175, 116, 48, 11, 23, 115, 329, 573, 698, 573, 329, 115, 23, 47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47, 106, 719, 2609, 5978, 9656, 11241, 9656, 5978, 2609, 719, 106, 235, 1842
Offset: 0

Views

Author

R. J. Mathar, Apr 16 2018

Keywords

Examples

			The triangle starts
    1;
    1,   1;
    1,   1,   1;
    1,   2,   2,    1;
    2,   4,   6,    4,    2;
    3,   9,  15,   15,    9,    3;
    6,  20,  43,   51,   43,   20,    6;
   11,  48, 116,  175,  175,  116,   48,  11;
   23, 115, 329,  573,  698,  573,  329, 115,  23;
   47, 286, 918, 1866, 2626, 2626, 1866, 918, 286, 47;
  106, 719,2609, 5978, 9656,11241, 9656,5978,2609,719,106;
  235,1842,
		

Crossrefs

Cf. A038056 (row sums), A000055 (diagonal and 1st column), A000081 (subdiagonal and 2nd column), A303833 (3rd column), A303843 (4th column), A304311 (connected graphs), A304489 (rooted).

Programs

  • PARI
    R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p,y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p,j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v;}
    M(n)={my(B=(1+y)*x*Ser(R(n,y))); 1 + B - (B^2 - substvec(B, [x,y], [x^2,y^2]))/2}
    { my(A=M(10)); for(n=0, #A-1, print(Vecrev(polcoeff(A, n)))) } \\ Andrew Howroyd, May 12 2018

Formula

T(n,f) = T(n,n-f), flipping all node colors.

Extensions

Row 10 completed. - R. J. Mathar, Apr 29 2018

A339830 Number of bicolored trees on n unlabeled nodes such that black nodes are not adjacent to each other.

Original entry on oeis.org

1, 2, 2, 4, 10, 26, 75, 234, 768, 2647, 9466, 34818, 131149, 503640, 1965552, 7777081, 31138051, 125961762, 514189976, 2115922969, 8769932062, 36584593158, 153510347137, 647564907923, 2744951303121, 11687358605310, 49965976656637, 214423520420723, 923399052307921
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form an independent vertex set. For n > 0, a(n) is then the total number of indistinguishable independent vertex sets summed over distinct unlabeled trees with n nodes.

Examples

			a(2) = 2 because at most one node can be colored black.
a(3) = 4 because the only tree is the path graph P_3. If the center node is colored black then neither of the ends can be colored black; otherwise zero, one or both of the ends can be colored black. In total there are 4 possibilities.
There are 3 trees with 5 nodes:
    o                                     o
    |                                     |
    o---o---o    o---o---o---o---o    o---o---o
    |                                     |
    o                                     o
These correspond respectively to 11, 9 and 6 bicolored trees (with black nodes not adjacent), so a(5) = 11 + 9 + 6 = 26.
		

Crossrefs

Cf. A038056 (bicolored trees), A339829, A339831, A339832, A339834, A339837.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=v=[1]); for(n=2, n, my(t=concat([1], EulerT(v))); v=concat([1], EulerT(u+v)); u=t); my(g=x*Ser(u+v), gu=x*Ser(u)); Vec(1 + g + (subst(g,x,x^2) - subst(gu,x,x^2) - g^2 + gu^2)/2)}

A339834 Number of bicolored trees on n unlabeled nodes such that every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 2, 4, 11, 29, 91, 299, 1057, 3884, 14883, 58508, 235771, 967790, 4037807, 17074475, 73058753, 315803342, 1377445726, 6056134719, 26817483095, 119516734167, 535751271345, 2414304071965, 10932421750492, 49723583969029, 227079111492652, 1040939109111200, 4788357522831785
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form a dominating set. For n > 0, a(n) is then the total number of indistinguishable dominating sets summed over distinct unlabeled trees with n nodes.

Examples

			a(2) = 2 because at most one node can be colored white.
a(3) = 4 because the only tree is the path graph P_3. If the center node is colored white then both of the ends must be colored black; otherwise zero, one or both of the ends can be colored black. In total there are 4 possibilities.
		

Crossrefs

Cf. A038056 (bicolored trees), A339830, A339833, A339835 (rooted), A339836, A339837.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=v=w=[]); for(n=1, n, my(t1=EulerT(v), t2=EulerT(u+v)); u=concat([1], EulerT(u+v+w)); v=concat([0], t2-t1); w=concat([1], t1)); my(g=x*Ser(u+v), guw=x^2*Ser(u)*Ser(w)); Vec(1 + g + (subst(g,x,x^2) - g^2 - 2*guw)/2)}

A339837 Number of bicolored trees on n unlabeled nodes such that black nodes are not adjacent to each other and every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 44, 111, 296, 819, 2332, 6808, 20302, 61559, 189413, 590091, 1858187, 5906637, 18932016, 61130413, 198697205, 649706622, 2135958254, 7056831766, 23420011178, 78048740454, 261099605923, 876564670090, 2952491169904, 9975191222798
Offset: 0

Views

Author

Andrew Howroyd, Dec 20 2020

Keywords

Comments

The black nodes form a maximal independent vertex set (or a set that is both independent and dominating). For n > 0, a(n) is then the total number of indistinguishable maximal independent vertex sets summed over distinct unlabeled trees with n nodes.

Examples

			a(2) = 1 because exactly one node must be colored black.
a(3) = 2 because the only tree is the path graph P_3. If the center node is colored black then neither of the ends can be colored black; otherwise both of the ends must be colored black. In total there are 2 possibilities.
There are 3 trees with 5 nodes:
    o                                     o
    |                                     |
    o---o---o    o---o---o---o---o    o---o---o
    |                                     |
    o                                     o
These correspond respectively to 3, 3 and 2 solutions, so a(5) = 3 + 3 + 2 = 8.
		

Crossrefs

Cf. A038056 (bicolored trees), A339830 (independent only), A339834 (dominating only), A339838 (rooted), A340021 (graphs).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=v=w=[]); for(n=1, n, my(t1=EulerT(v), t2=EulerT(u+v)); u=concat([1], EulerT(v+w)); v=concat([0], t2-t1); w=concat([1], t1)); my(g=x*Ser(u+v), gu=x*Ser(u), gw=x*Ser(w)); Vec(1 + g + (subst(g,x,x^2) - subst(gu,x,x^2) - g^2 - 2*gu*gw + gu^2)/2)}
Showing 1-5 of 5 results.