cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A000151 Number of oriented rooted trees with n nodes. Also rooted trees with n nodes and 2-colored non-root nodes.

Original entry on oeis.org

1, 2, 7, 26, 107, 458, 2058, 9498, 44947, 216598, 1059952, 5251806, 26297238, 132856766, 676398395, 3466799104, 17873508798, 92630098886, 482292684506, 2521610175006, 13233573019372, 69687684810980, 368114512431638, 1950037285256658, 10357028326495097, 55140508518522726, 294219119815868952, 1573132563600386854, 8427354035116949486, 45226421721391554194
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, R(x).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Also the self-convolution of A005750. - Paul D. Hanna, Aug 17 2002
Column k=2 of A242249.

Programs

  • Maple
    R:=series(x+2*x^2+7*x^3+26*x^4,x,5); M:=500;
    for n from 5 to M do
    series(add( subs(x=x^k,R)/k, k=1..n-1),x,n);
    t4:=coeff(series(x*exp(%)^2,x,n+1),x,n);
    R:=series(R+t4*x^n,x,n+1); od:
    for n from 1 to M do lprint(n,coeff(R,x,n)); od: # N. J. A. Sloane, Mar 10 2007
    with(combstruct):norootree:=[S, {B = Set(S), S = Prod(Z,B,B)}, unlabeled] :seq(count(norootree,size=i),i=1..30); # with Algolib (Pab Ter)
  • Mathematica
    terms = 30; A[] = 0; Do[A[x] = x*Exp[2*Sum[A[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest
    (* Jean-François Alcover, Jun 08 2011, updated Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); A} \\ Andrew Howroyd, May 13 2018

Formula

Generating function A(x) = x+2*x^2+7*x^3+26*x^4+... satisfies A(x)=x*exp( 2*sum_{k>=1}(A(x^k)/k) ) [Harary]. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005
G.f.: x*Product_{n>=1} 1/(1 - x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n.
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.2078615974229174213216534920508516879353537904602582293754027908931077971... - Vaclav Kotesovec, Aug 20 2014, updated Dec 26 2020

Extensions

Extended with alternate description by Christian G. Bower, Apr 15 1998
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 12 2005

A245870 Decimal expansion of a constant related to A000151.

Original entry on oeis.org

5, 6, 4, 6, 5, 4, 2, 6, 1, 6, 2, 3, 2, 9, 4, 9, 7, 1, 2, 8, 9, 2, 7, 1, 3, 5, 1, 6, 2, 1, 6, 9, 1, 3, 8, 3, 8, 1, 4, 9, 8, 2, 1, 9, 1, 1, 6, 0, 5, 3, 8, 4, 3, 9, 2, 3, 8, 5, 8, 1, 7, 0, 2, 8, 8, 5, 0, 0, 2, 1, 4, 3, 1, 1, 2, 2, 4, 9, 4, 3, 0, 7, 7, 0, 7, 4, 2, 7, 5, 5, 5, 1, 6, 1, 1, 7, 7, 8, 8, 3, 4, 0, 6, 6, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 25 2014

Keywords

Examples

			5.646542616232949712892713516216913838149821911605384392385817...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 307 and 564.

Crossrefs

Formula

Equals lim n -> infinity A000151(n)^(1/n).
Equals lim n -> infinity A005751(n)^(1/n).
Equals lim n -> infinity A038055(n)^(1/n).
Equals lim n -> infinity A005750(n)^(1/n).
Equals lim n -> infinity A198760(n)^(1/n).

Extensions

More terms from Vaclav Kotesovec, Sep 11 2014 and Dec 26 2020

A038062 Number of labeled trees with 3-colored nodes.

Original entry on oeis.org

1, 3, 9, 81, 1296, 30375, 944784, 36756909, 1719926784, 94143178827, 5904900000000, 417703359617577, 32905425960566784, 2857282535902251951, 271165225379757133824, 27925772039747314453125
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Formula

A038061/n. E.g.f. B(3x) where B(x) is e.g.f. of A000272.

A198760 Number of initial spin configurations in two-colored rooted trees with n nodes.

Original entry on oeis.org

2, 8, 32, 136, 596, 2712, 12642, 60234, 291840, 1434184, 7130640, 35807114, 181339236, 925139186, 4750176056, 24528421712, 127294780994, 663591911824, 3473315219722, 18246162722278, 96169600405626, 508413199626078, 2695245063006696, 14324688031734740
Offset: 2

Views

Author

N. J. A. Sloane, Oct 29 2011

Keywords

Comments

Also the number of two-colored rooted trees that have for a given color of the root at least one nearest neighbor node of the root in the other color. - Martin Paech, Apr 16 2012

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011

Crossrefs

Programs

  • Maple
    g:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(t*g(i-1$2, 2)+j-1, j)*g(n-i*j, i-1, t), j=0..n/i)))
        end:
    a:= n-> 2*(g(n-1$2, 2) -g(n-1$2, 1)):
    seq(a(n), n=2..30);  # Alois P. Heinz, May 12 2014
  • Mathematica
    g[n_, i_, t_] := g[n, i, t] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[t*g[i-1, i-1, 2]+j-1, j]*g[n-i*j, i-1, t], {j, 0, n/i}]]]; a[n_] := 2*(g[n-1, n-1, 2] - g[n-1, n-1, 1]) // FullSimplify; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.6465426162329497128927135162..., c = 0.29201514711473716704145008728... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Terms a(8) and a(9) added by Martin Paech, Apr 16 2012
Term a(10) added by Martin Paech, Jul 30 2013
a(11)-a(25) from Alois P. Heinz, May 12 2014

A038056 Number of trees with n 2-colored nodes.

Original entry on oeis.org

2, 3, 6, 18, 54, 189, 700, 2778, 11486, 49377, 217936, 984818, 4533004, 21198962, 100471862, 481754806, 2333465628, 11404047817, 56177574628, 278710061814, 1391617108600, 6988781174376, 35283390923324, 178990052273558, 912019786448570, 4665994686718118
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Cf. A000055, A038055-A038062. Row sums of A294783.

Formula

G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A038055.

A198761 Number of hopping sequences in four-colored rooted trees with n nodes, starting and ending with the same "initial state" from all of the (two-colored) rooted trees in A198760. See comments.

Original entry on oeis.org

2, 20, 648, 45472, 5644880, 1099056000, 310007943616, 119777421416192
Offset: 2

Views

Author

N. J. A. Sloane, Oct 29 2011

Keywords

Comments

Compared to A225823, both node colors of the initial states are mobile on the tree (Hubbard model). - Eva Kalinowski, Jul 30 2013

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
  • M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)

Crossrefs

Extensions

Terms a(8) and a(9) added by Martin Paech, Apr 16 2012

A339831 Number of rooted bicolored trees on n nodes such that black nodes are not adjacent to each other.

Original entry on oeis.org

2, 3, 9, 28, 97, 346, 1302, 5014, 19830, 79813, 326344, 1350918, 5652334, 23861787, 101519790, 434827232, 1873491739, 8114411769, 35309142309, 154288183928, 676730773252, 2978405318453, 13149337960554, 58218455727085, 258435947527696, 1149982662789042
Offset: 1

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Examples

			a(1) = 2: B, W.
a(2) = 3: B(W), W(B), W(W).
a(3) = 9: B(WW), W(BB), W(BW), W(WW), B(W(B)), B(W(W)), W(B(W)), W(W(B)), W(W(W)).
		

Crossrefs

Cf. A038055 (rooted bicolored trees), A339830 (unrooted case), A339835, A339838.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=v=[]); for(n=1, n, my(t=concat([1], EulerT(v))); v=concat([1], EulerT(u + v)); u=t); u + v}

A339835 Number of rooted bicolored trees on n unlabeled nodes such that every white node is adjacent to a black node.

Original entry on oeis.org

1, 3, 9, 30, 111, 424, 1705, 7024, 29692, 127748, 558219, 2469403, 11039992, 49796803, 226348740, 1035750855, 4767429667, 22058219466, 102534463563, 478602668159, 2242383155726, 10541976883286, 49714185649417, 235109360767014, 1114782699692044, 5298494249055391
Offset: 1

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Examples

			a(1) = 1: B.
a(2) = 4: B(B), B(W), W(B).
a(3) = 9: B(BB), B(BW), B(WW), W(BB), B(B(B)), B(B(W)), B(W(B)), W(B(B)), W(B(W)).
		

Crossrefs

Cf. A038055 (rooted bicolored trees), A339831, A339834 (unrooted), A339838.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=v=w=[]); for(n=1, n, my(t1=EulerT(v), t2=EulerT(u+v)); u=concat([1], EulerT(u+v+w)); v=concat([0], t2-t1); w=concat([1], t1)); u+v}

A038057 a(n) = 2^n*n^(n-1).

Original entry on oeis.org

2, 8, 72, 1024, 20000, 497664, 15059072, 536870912, 22039921152, 1024000000000, 53119845582848, 3043362286338048, 190857913323364352, 13004222844995895296, 956593800000000000000, 75557863725914323419136
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Labeled rooted trees with n 2-colored nodes.

Crossrefs

Equals 2 * A052746(n).

Programs

  • Mathematica
    nn=16;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-2x Exp[f[x]],{x,0,nn}],x];Table[a[n],{n,1,nn}]/.s
    (* or *)
    nn=16;Drop[Range[0,nn]!CoefficientList[Series[-LambertW[-2x],{x,0,nn}],x],1]
    (* or *)
    Table[2^n*n^(n-1),{n,1,16}]  (* Geoffrey Critzer, Mar 17 2013 *)

Formula

E.g.f.: B(2*x) where B(x) is e.g.f. of A000169.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023

Extensions

New description from Vladeta Jovovic, Mar 08 2003

A038059 Number of rooted trees with 3-colored nodes.

Original entry on oeis.org

3, 9, 45, 246, 1485, 9432, 62625, 428319, 3000393, 21410436, 155106693, 1137703869, 8432624850, 63060142671, 475196487363, 3604851603690, 27507181503069, 210988219961637, 1625848092941463, 12580709718788622, 97714211996345868, 761528782558088202
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Shifts left and divides by 3 under Euler transform.

Crossrefs

Cf. A000081, A038055-A038062, A271879 (multisets).

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n<2, 3*n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end: seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = If[n<2, 3*n, Sum[Sum[d*a[d], {d, Divisors[j]}] *a[n-j], {j, 1, n-1}]/(n-1)]; Array[a, 30] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = 3 * A006964(n).
Showing 1-10 of 20 results. Next