cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A038055 Number of n-node rooted trees with nodes of 2 colors.

Original entry on oeis.org

2, 4, 14, 52, 214, 916, 4116, 18996, 89894, 433196, 2119904, 10503612, 52594476, 265713532, 1352796790, 6933598208, 35747017596, 185260197772, 964585369012, 5043220350012, 26467146038744, 139375369621960, 736229024863276, 3900074570513316, 20714056652990194
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Cf. A000081, A038056-A038062, A271878 (multisets).
Cf. A245870.

Programs

  • Maple
    spec := [N, {N=Prod(bead,Set(N)), bead=Union(R,B), R=Atom, B=Atom}]; [seq(combstruct[count](spec, size=n), n=1..40)];
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n<2, 2*n, (add(add(d*
          a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, May 11 2014
  • Mathematica
    a[n_] := a[n] = If[n<2, 2*n, (Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
    a[1] = 2; a[n_] := a[n] = Sum[k a[k] a[n - m k]/(n-1), {k, n}, {m, (n-1)/k}]; Table[a[n], {n, 30}] (* Vladimir Reshetnikov, Aug 12 2016 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); 2*A} \\ Andrew Howroyd, May 12 2018

Formula

Shifts left and halves under Euler transform.
a(n) = 2*A000151(n).
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232949712892713516..., c = 0.41572319484583484264330698410170337587070758092051645875080558178621559423... . - Vaclav Kotesovec, Sep 11 2014, updated Dec 26 2020

A038056 Number of trees with n 2-colored nodes.

Original entry on oeis.org

2, 3, 6, 18, 54, 189, 700, 2778, 11486, 49377, 217936, 984818, 4533004, 21198962, 100471862, 481754806, 2333465628, 11404047817, 56177574628, 278710061814, 1391617108600, 6988781174376, 35283390923324, 178990052273558, 912019786448570, 4665994686718118
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Cf. A000055, A038055-A038062. Row sums of A294783.

Formula

G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A038055.

A038057 a(n) = 2^n*n^(n-1).

Original entry on oeis.org

2, 8, 72, 1024, 20000, 497664, 15059072, 536870912, 22039921152, 1024000000000, 53119845582848, 3043362286338048, 190857913323364352, 13004222844995895296, 956593800000000000000, 75557863725914323419136
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Labeled rooted trees with n 2-colored nodes.

Crossrefs

Equals 2 * A052746(n).

Programs

  • Mathematica
    nn=16;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-2x Exp[f[x]],{x,0,nn}],x];Table[a[n],{n,1,nn}]/.s
    (* or *)
    nn=16;Drop[Range[0,nn]!CoefficientList[Series[-LambertW[-2x],{x,0,nn}],x],1]
    (* or *)
    Table[2^n*n^(n-1),{n,1,16}]  (* Geoffrey Critzer, Mar 17 2013 *)

Formula

E.g.f.: B(2*x) where B(x) is e.g.f. of A000169.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023

Extensions

New description from Vladeta Jovovic, Mar 08 2003

A038059 Number of rooted trees with 3-colored nodes.

Original entry on oeis.org

3, 9, 45, 246, 1485, 9432, 62625, 428319, 3000393, 21410436, 155106693, 1137703869, 8432624850, 63060142671, 475196487363, 3604851603690, 27507181503069, 210988219961637, 1625848092941463, 12580709718788622, 97714211996345868, 761528782558088202
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Shifts left and divides by 3 under Euler transform.

Crossrefs

Cf. A000081, A038055-A038062, A271879 (multisets).

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n<2, 3*n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end: seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := a[n] = If[n<2, 3*n, Sum[Sum[d*a[d], {d, Divisors[j]}] *a[n-j], {j, 1, n-1}]/(n-1)]; Array[a, 30] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = 3 * A006964(n).

A038058 Number of labeled trees with 2-colored nodes.

Original entry on oeis.org

1, 2, 4, 24, 256, 4000, 82944, 2151296, 67108864, 2448880128, 102400000000, 4829076871168, 253613523861504, 14681377947951104, 928873060356849664, 63772920000000000000, 4722366482869645213696, 375183514207494575620096
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Maple
    1, seq(2^n * n^(n-2), n=1..20); # Robert Israel, Nov 02 2014
  • Mathematica
    nn = 17; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[f[2 x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 02 2014 *)

Formula

a(n) = A038057(n)/n = 2^n * n^(n-2) for n>=1. E.g.f. B(2*x) where B(x) is e.g.f. of A000272.

A038061 a(n) = 3^n*n^(n-1).

Original entry on oeis.org

3, 18, 243, 5184, 151875, 5668704, 257298363, 13759414272, 847288609443, 59049000000000, 4594736955793347, 394865111526801408, 37144672966729275363, 3796313155316599873536, 418886580596209716796875
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Labeled rooted trees with 3-colored nodes.

Crossrefs

Programs

Formula

E.g.f. B(3x) where B(x) is e.g.f. of A000169.

Extensions

New description from Vladeta Jovovic, Mar 08 2003

A038060 Number of trees with 3-colored nodes.

Original entry on oeis.org

1, 3, 6, 18, 75, 342, 1773, 9894, 58596, 362061, 2314119, 15185223, 101830986, 695253993, 4819762446, 33851833506, 240472935735, 1725315714729, 12487872432924, 91097741283408, 669227023979088, 4947500029023540, 36786363204267282, 274949933519917908
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Equals 3 * A006965(n).

Programs

  • Mathematica
    b[n_] := b[n] = If[n < 2, 3n, (Sum[Sum[b[d] d, {d, Divisors[j]}] b[n - j], {j, 1, n - 1}])/(n - 1)];
    a[n_] := If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz in A006965 *)

Formula

G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A038059.
Showing 1-7 of 7 results.