A052746
a(0) = 0; a(n) = (2*n)^(n-1), n > 0.
Original entry on oeis.org
0, 1, 4, 36, 512, 10000, 248832, 7529536, 268435456, 11019960576, 512000000000, 26559922791424, 1521681143169024, 95428956661682176, 6502111422497947648, 478296900000000000000, 37778931862957161709568, 3189059870763703892770816, 286511799958070431838109696
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Robert Israel, Table of n, a(n) for n = 0..350
- Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
- C. Banderier, J.-M. Le Bars, and V. Ravelomanana, Generating functions for kernels of digraphs, arXiv:math/0411138 [math.CO], 2004.
- Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 702
-
spec := [S,{B=Set(S),S=Prod(Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
terms = 19;
A[x_] = -1/2 LambertW[-2 x];
CoefficientList[A[x] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jan 15 2019 *)
Join[{0},Table[(2n)^(n-1),{n,20}]] (* Harvey P. Dale, Dec 14 2020 *)
-
a(n)=if(n,(2*n)^(n-1),0) \\ Charles R Greathouse IV, Nov 20 2011
-
[lucas_number1(n, 2*n, 0) for n in range(0, 17)] # Zerinvary Lajos, Mar 09 2009
A038058
Number of labeled trees with 2-colored nodes.
Original entry on oeis.org
1, 2, 4, 24, 256, 4000, 82944, 2151296, 67108864, 2448880128, 102400000000, 4829076871168, 253613523861504, 14681377947951104, 928873060356849664, 63772920000000000000, 4722366482869645213696, 375183514207494575620096
Offset: 0
-
1, seq(2^n * n^(n-2), n=1..20); # Robert Israel, Nov 02 2014
-
nn = 17; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[f[2 x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 02 2014 *)
A320064
The number of F_2 graphs on { 1, 2, ..., n } with a unique cycle of weight 1, which corresponds to the number of reflectable bases of the root system of type D_n.
Original entry on oeis.org
0, 1, 16, 312, 7552, 220800, 7597824, 301321216, 13545271296, 681015214080, 37879390720000, 2309968030334976, 153275504883695616, 10995166075754119168, 847974316241667686400, 69971459959477921382400, 6151490510604350965940224, 574035430519008722436489216, 56669921387839814123670994944
Offset: 1
- Vaclav Kotesovec, Table of n, a(n) for n = 1..350
- Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
- S. Azam, M. B. Soltani, M. Tomie and Y. Yoshii, A graph theoretical classification for reflectable bases, PRIMS, Vol 55 no 4, (2019), 689-736.
- Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&+[j^(j-1)*(2*x)^j/Factorial(j): j in [1..m+2]])^k/(4*k): k in [2..m+1]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 10 2018
-
nmax = 20; Rest[CoefficientList[Series[Sum[1/(4*m)*(Sum[k^(k-1)*(2*x)^k/k!, {k, 1, nmax}])^m, {m, 2, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Oct 23 2018 *)
-
seq(n)={Vec(serlaplace(sum(m=2, n, (sum(k=1, n, k^(k-1)*(2*x)^k/k!) + O(x^n))^m/(4*m))), -n)} \\ Andrew Howroyd, Nov 07 2018
-
apply( A320064(n)=A001863(n)*(n-1)<<(n-2), [1..20]) \\ Defines the function A320064. The additional apply(...) provides a check and illustration. - M. F. Hasler, Dec 09 2018
-
from math import comb
def A320064(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<Chai Wah Wu, Apr 25-26 2023
A361291
a(n) = ((2*n + 1)^n - 1)/(2*n).
Original entry on oeis.org
1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
Offset: 1
-
Table[((2n+1)^n-1)/(2n),{n,20}]
-
def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023
Showing 1-4 of 4 results.
Comments