cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Masaya Tomie

Masaya Tomie's wiki page.

Masaya Tomie has authored 3 sequences.

A338200 The number of similarity classes of pointed reflection spaces of residue two in an n-dimensional vector space over GF(2).

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 12, 17, 21, 27, 33, 41, 48, 58, 67, 79, 90, 104, 117, 134, 149, 168, 186, 208, 228, 253, 276, 304, 330, 361, 390, 425, 457, 495, 531, 573, 612, 658, 701, 751, 798, 852, 903, 962, 1017, 1080, 1140, 1208, 1272, 1345, 1414, 1492, 1566, 1649
Offset: 1

Author

Masaya Tomie, Oct 16 2020

Keywords

Crossrefs

Cf. A069905.

Programs

  • Mathematica
    F[n_] := If[EvenQ[n],
      n (n - 2)/8 +
       2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, n/2}] +
       Length[IntegerPartitions[(n + 2)/2, {3}]],
      2*Floor[(n - 1)/4]*Floor[(n + 1)/4] +
       2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, (n - 1)/2}] +
       Length[IntegerPartitions[(n + 1)/2, {3}]] +
       Length[IntegerPartitions[(n + 3)/2, {3}]]]
    (* Second program: *)
    LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1}, {0,0,1,2,4,6,9,12,17,21}, 55] (* Jean-François Alcover, Nov 13 2020 *)
  • PARI
    concat([0,0], Vec((1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^50))) \\ Andrew Howroyd, Oct 29 2020

Formula

a(n) = (1/8)*n*(n-2) + 2*(Sum_{k=3..n/2} p(k,3)) + p((n+2)/2,3) if n is even; a(n) = 2*floor((n-1)/4)*floor((n+1)/4) + 2*(Sum_{k=3..(n-1)/2} p(k,3)) + p((n+1)/2,3) + p((n+3)/2,3) if n is odd, where p(k,3) = A069905(k) is the number of partitions of k into three parts.
From Andrew Howroyd, Oct 29 2020: (Start)
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 10.
G.f.: x^3*(1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
(End)

A321233 a(n) is the number of reflectable bases of the root system of type D_n.

Original entry on oeis.org

0, 4, 128, 4992, 241664, 14131200, 972521472, 77138231296, 6935178903552, 697359579217920, 77576992194560000, 9461629052252061696, 1255632936007234486272, 180144800985155488448512, 27786422394606966747955200, 4585649599904345055716966400, 806288164205933489807717040128
Offset: 1

Author

Masaya Tomie, Nov 01 2018

Keywords

Comments

The root systems of type D_n are only defined for n >= 4. See chapter 3 of the Humphreys reference. Sequence extended to n=1 using formula/recurrence.

References

  • J. E. Humphreys, Introduction to Lie algebras and representation theory, 2nd ed, Springer-Verlag, New York, 1972.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[ (&+[ j^(j-1)*(4*x)^j/Factorial(j) :j in [1..m+3]])^k/(4*k) :k in [2..m+2]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 09 2018
    
  • Mathematica
    Rest[With[{m = 25}, CoefficientList[Series[Sum[Sum[j^(j - 1)*(4*x)^j/j!, {j, 1, m + 1}]^k/(4*k), {k, 2, m}], {x, 0, m}], x]*Range[0, m]!]] (* G. C. Greubel, Dec 09 2018 *)
  • PARI
    a(n)={n!*polcoef(sum(m=2, n, (sum(k=1, n, k^(k-1)*(4*x)^k/k!) + O(x^(n-m+2)))^m/(4*m)), n)} \\ Andrew Howroyd, Nov 01 2018
    
  • PARI
    A321233(n)=A001863(n)*(n-1)*4^(n-1) \\ M. F. Hasler, Dec 09 2018
    
  • Python
    from math import comb
    def A321233(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<<(n-1<<1) # Chai Wah Wu, Apr 26 2023

Formula

E.g.f.: Sum_{m>=2} (1/(4*m)) (Sum_{k>=1} k^(k-1)*(4*x)^k/k!)^m.
a(n) = 2^n*A320064(n).
a(n) = (n-1)*4^(n-1)*A001863(n). - M. F. Hasler, Dec 09 2018

A320064 The number of F_2 graphs on { 1, 2, ..., n } with a unique cycle of weight 1, which corresponds to the number of reflectable bases of the root system of type D_n.

Original entry on oeis.org

0, 1, 16, 312, 7552, 220800, 7597824, 301321216, 13545271296, 681015214080, 37879390720000, 2309968030334976, 153275504883695616, 10995166075754119168, 847974316241667686400, 69971459959477921382400, 6151490510604350965940224, 574035430519008722436489216, 56669921387839814123670994944
Offset: 1

Author

Masaya Tomie, Oct 04 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&+[j^(j-1)*(2*x)^j/Factorial(j): j in [1..m+2]])^k/(4*k): k in [2..m+1]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 10 2018
    
  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[Sum[1/(4*m)*(Sum[k^(k-1)*(2*x)^k/k!, {k, 1, nmax}])^m, {m, 2, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Oct 23 2018 *)
  • PARI
    seq(n)={Vec(serlaplace(sum(m=2, n, (sum(k=1, n, k^(k-1)*(2*x)^k/k!) + O(x^n))^m/(4*m))), -n)} \\ Andrew Howroyd, Nov 07 2018
    
  • PARI
    apply( A320064(n)=A001863(n)*(n-1)<<(n-2), [1..20]) \\ Defines the function A320064. The additional apply(...) provides a check and illustration. - M. F. Hasler, Dec 09 2018
    
  • Python
    from math import comb
    def A320064(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<Chai Wah Wu, Apr 25-26 2023

Formula

E.g.f.: Sum_{m>=2} (1/(4*m)) (Sum_{k>=1} k^(k-1)*(2*x)^k/k!)^m.
a(n) = (n-1)*2^(n-2)*A001863(n). - M. F. Hasler, Dec 09 2018
a(n) = 2^(n-2)*A000435(n). - Chai Wah Wu, Apr 25 2023