cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097629 a(n) = 2*(2n)^(n-2).

Original entry on oeis.org

1, 2, 12, 128, 2000, 41472, 1075648, 33554432, 1224440064, 51200000000, 2414538435584, 126806761930752, 7340688973975552, 464436530178424832, 31886460000000000000, 2361183241434822606848, 187591757103747287810048
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Comments

Number of all unrooted directed trees on n nodes.
Ditrees are well-colored directed trees. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.

Crossrefs

Equals (1/2) A038058 = A097630(n) + A097631(n). Cf. A052746, A097627.

Programs

  • Magma
    [1] cat [2*(2*n)^(n-2): n in [2..20]]; // Vincenzo Librandi, Nov 19 2014
    
  • Mathematica
    Table[2*(2*n)^(n - 2), {n, 1, 50}] (* or *) With[{nmax = 40}, CoefficientList[Series[-LambertW[-2*x]*(1+LambertW[-2*x]/2)/2, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 15 2017 *)
  • Maxima
    a(n):=sum(k!*stirling2(n-1,k)*binomial(2*n,k),k,0,n-1)/(n); /* Vladimir Kruchinin, Nov 19 2014 */
    
  • PARI
    /* E.g.f. when offset=0 satisfies: */
    {a(n)=local(A=1+2*x);for(i=1,21,A=1+2*sum(n=1,21,x^(2*n-1)/(2*n-1)!*A^((4*n-1)/2))+x*O(x^n));n!*polcoeff(A,n)} \\ Paul D. Hanna, Sep 07 2012
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    x='x+O('x^50); Vec(serlaplace(-lambertw(-2*x)*(1 + lambertw(-2*x)/2)/2)) \\ G. C. Greubel, Nov 15 2017

Formula

E.g.f.: A(x) = B(x)-B(x)^2, B(x) = e.g.f. of A052746 or A(x) = C(2*x)/2, C(x) = e.g.f. of A000272.
E.g.f. satisfies: A(x) = 1 + 2*Sum_{n>=1} x^(2*n-1)/(2*n-1)! * A(x)^((4*n-1)/2) when offset=0: A(x) = Sum_{n>=0} a(n)*x^n/n!. - Paul D. Hanna, Sep 07 2012
E.g.f. satisfies: A(x) = 1/A(-x*A(x)^2) when offset=0. - Paul D. Hanna, Sep 07 2012
a(n) = sum(k=0..n-1, k!*stirling2(n-1,k)*binomial(2*n,k))/n. - Vladimir Kruchinin, Nov 19 2014
E.g.f.: -LambertW(-2*x)*(1+LambertW(-2*x)/2)/2. - Vaclav Kotesovec, Dec 08 2014

A249632 Triangular array read by rows. T(n,k) is the number of labeled trees with black and white nodes having exactly k black nodes, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 9, 9, 3, 16, 64, 96, 64, 16, 125, 625, 1250, 1250, 625, 125, 1296, 7776, 19440, 25920, 19440, 7776, 1296, 16807, 117649, 352947, 588245, 588245, 352947, 117649, 16807, 262144, 2097152, 7340032, 14680064, 18350080, 14680064, 7340032, 2097152, 262144
Offset: 0

Views

Author

Geoffrey Critzer, Nov 02 2014

Keywords

Comments

Row sums = A038058.
T(n,n) = T(n,0) = n^(n-2) free trees A000272.
T(n,n-1) = T(n,1) = n^(n-1) rooted trees A000169.
T(n,2) = A081131.

Examples

			1,
1,    1,
1,    2,    1,
3,    9,    9,     3,
16,   64,   96,    64,    16,
125,  625,  1250,  1250,  625,   125,
1296, 7776, 19440, 25920, 19440, 7776, 1296
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press,1973, page 30, exercise 1.10.

Programs

  • Mathematica
    nn = 6; f[x_] := Sum[n^(n - 2) x^n/n!, {n, 1, nn}];
    Map[Select[#, # > 0 &] &,
      Range[0, nn]! CoefficientList[
        Series[f[x + y x] + 1, {x, 0, nn}], {x, y}]] // Grid

Formula

E.g.f.: A(x + y*x) where A(x) is the e.g.f. for A000272.
Showing 1-2 of 2 results.