cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A062735 Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Examples

			1;
0, 2, 1;
0, 0, 12, 20,   15,    6,      1;
0, 0, 0, 128,  432,  768,    920,    792,    495,    220,     66,    12, 1;
0, 0, 0,   0, 2000, 11104, 33880,  73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0,   0,    0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0,   0,    0,     0, 1075648,...
		

Crossrefs

Cf. A003027 (row sums), A054733 (unlabeled case), A057273 (strongly connected), A097629 (diagonal), A123554 (not necessarily connected).

Programs

  • Mathematica
    nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
    { for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022

Formula

E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).

A152555 Coefficients in a q-analog of the function LambertW(-2*x)/(-2*x), as a triangle read by rows.

Original entry on oeis.org

1, 2, 7, 5, 30, 42, 42, 14, 143, 297, 462, 495, 363, 198, 42, 728, 2002, 4004, 6006, 7436, 7436, 6292, 4290, 2288, 858, 132, 3876, 13260, 31824, 58604, 91364, 122876, 145535, 153361, 143936, 120185, 87971, 56329, 29939, 12584, 3575, 429, 21318, 87210
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Examples

			Triangle begins:
  1;
  2;
  7,5;
  30,42,42,14;
  143,297,462,495,363,198,42;
  728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
  3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
  21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
where row sums = 2*(2*n+2)^(n-1) (A097629).
Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
The generating function starts:
A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases.
q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
		

Crossrefs

Cf. A097629 (row sums), A006013 (column 0), A000108 (right border), A152559.
Cf. A152556 (q=-1), A152557 (q=2), A152558 (q=3).
Cf. variants: A152290, A152550.

Programs

  • PARI
    {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}

Formula

G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n*(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q)^2 ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q)^2 and A( x/e_q(x,q)^2, q) = e_q(x,q)^2.
G.f. at q=1: A(x,1) = LambertW(-2*x)/(-2*x).
Row sums at q=+1: Sum_{k=0..n*(n-1)/2} T(n,k) = 2*(2*n+2)^(n-1).
Row sums at q=-1: Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = 2*(2*n+2)^[(n-1)/2].
Sum_{k=0..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n) = 2 for n>=1; i.e., the n-th row sum at q = exp(2*Pi*I/n), the n-th root of unity, equals 2 for n>=1. - Vladeta Jovovic
Sum_{k=0..binomial(n,2)} T(n,k)*q^k = Sum_{pi} 2*(2*n+1)!/(2*n-k+2)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs over all nonnegative integer solutions to e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). - Vladeta Jovovic, Dec 07 2008

A097627 Number of rooted directed trees on n nodes with a red root.

Original entry on oeis.org

1, 2, 21, 280, 5465, 134556, 4051453, 143810416, 5884797969, 272701388980, 14116335883661, 807328717090248, 50554260752606377, 3440140092356781100, 252777268861251990045, 19946622760623381708256
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Comments

Ditrees are well-colored directed trees. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.

Crossrefs

Cf. A097629.

Programs

  • Mathematica
    Rest[CoefficientList[Series[LambertW[-LambertW[-2*x]/2], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 08 2013 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(lambertw(-lambertw(-2*x)/2))) \\ G. C. Greubel, Nov 15 2017

Formula

a(n) = A052746(n) - A097628(n).
E.g.f.: -C(-C(2*x)/2), where C(x) is the e.g.f. of A000169.
a(n) ~ LambertW(1/2) * n^(n-1) * 2^n / (1+LambertW(1/2)). - Vaclav Kotesovec, Oct 08 2013

A350732 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n labeled nodes with k arcs, n >= 0, k=0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 2, 0, 0, 12, 8, 0, 0, 0, 128, 240, 192, 64, 0, 0, 0, 0, 2000, 7104, 13120, 15360, 11520, 5120, 1024, 0, 0, 0, 0, 0, 41472, 234240, 729600, 1578240, 2531840, 3068928, 2795520, 1863680, 860160, 245760, 32768
Offset: 1

Views

Author

Andrew Howroyd, Jan 11 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 12,   8;
  [4] 0, 0,  0, 128,  240,  192,    64;
  [5] 0, 0,  0,   0, 2000, 7104, 13120, 15360, 11520, 5120, 1024;
  ...
		

Crossrefs

Row sums are A054941.
The leading diagonal is A097629.
The unlabeled version is A350734.
Cf. A062735 (digraphs), A350731 (strongly connected).

Programs

  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+2*y)^(k*(k-1)/2)*x^k/k!, O(x*x^n))), n))}
    { for(n=1, 5, print(row(n))) }

A097630 Number of unrooted directed trees on n nodes with a red root.

Original entry on oeis.org

1, 1, 7, 70, 1093, 22426, 578779, 17976302, 653866441, 27270138898, 1283303262151, 67277393090854, 3888789288662029, 245724292311198650, 16851817924083466003, 1246663922538961356766, 98960637955717312632721
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Crossrefs

Cf. A097629.

Programs

  • Mathematica
    terms = 17;
    Rest[CoefficientList[LambertW[-LambertW[-2x]/2] + O[x]^(terms+1), x]]* Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)
  • PARI
    seq(n)={Vec(serlaplace(lambertw(-lambertw(-2*x + O(x*x^n))/2)/x))} \\ Andrew Howroyd, Dec 13 2018

Formula

E.g.f.: A(x) = 2B - 2BC + C - 2B/C + C^2/2, with B = egf of A052746 and C = egf of A097627.
a(n) = (n-1)!*[x^n](LambertW(-LambertW(-2x)/2)). - Jean-François Alcover, Dec 13 2018
a(n) ~ 2^n * n^(n-2) / (1 + 1/LambertW(1/2)). - Vaclav Kotesovec, Feb 24 2019

A380646 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x)/(1 + x)^2 ).

Original entry on oeis.org

1, 4, 46, 932, 27568, 1080432, 52916176, 3115326496, 214470890496, 16914853191680, 1504252282653184, 148956086481767424, 16256865070022066176, 1938988214539948730368, 250943399365390735104000, 35026523834624205803491328, 5245178283068781060488298496, 838841884254236846183525646336
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=18; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-2*x]/(1 + x)^2 ,{x,0,nmax}]],x]Range[0,nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
  • PARI
    a(n) = 2*n!*sum(k=0, n, (2*n+2)^(k-1)*binomial(2*n+2, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * exp(2 * x * A(x)).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377892.
a(n) = 2 * n! * Sum_{k=0..n} (2*n+2)^(k-1) * binomial(2*n+2,n-k)/k!.

A377360 E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^2.

Original entry on oeis.org

1, 2, 12, 130, 2082, 44488, 1192964, 38557860, 1459988440, 63414711072, 3108861424032, 169829819311392, 10230860299538400, 673850170929176928, 48176129912775680160, 3715759452364764485280, 307545698210584533055488, 27190399275422185989742080, 2557448587458299889542868480
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[1/x * InverseSeries[Series[x/(1 - Log[1 - x])^2, {x, 0, nmax + 1}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 27 2025 *)
  • PARI
    a(n) = 2*(2*n+1)!*sum(k=0, n, abs(stirling(n, k, 1))/(2*n-k+2)!);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A367080.
a(n) = 2 * (2*n+1)! * Sum_{k=0..n} |Stirling1(n,k)|/(2*n-k+2)!.
E.g.f.: (1/x) * Series_Reversion( x/(1 - log(1-x))^2 ).
a(n) ~ sqrt(2) * LambertW(-1, -2*exp(-3))^n * (2 + LambertW(-1, -2*exp(-3)))^(n+2) * n^(n-1) / (exp(n) * sqrt(-1 - LambertW(-1, -2*exp(-3)))). - Vaclav Kotesovec, Aug 27 2025

A097631 Number of unrooted directed trees on n nodes with a green root.

Original entry on oeis.org

0, 1, 5, 58, 907, 19046, 496869, 15578130, 570573623, 23929861102, 1131235173433, 59529368839898, 3451899685313523, 218712237867226182, 15034642075916533997, 1114519318895861250082, 88631119148029975177327, 7526795487859400166772958, 679859967684397018073935617
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Crossrefs

Equals A097629(n) - A097630(n).

Programs

  • Mathematica
    (* Note: Mathematica's ProductLog is the Lambert W function. *)
    a[n_] := SeriesCoefficient[-ProductLog[-ProductLog[-2x]/2]/n - ProductLog[-2x] (ProductLog[-2x] + 2)/4, {x, 0, n}] n!;
    Array[a, 17] (* Jean-François Alcover, Feb 24 2019 *)

Formula

a(n) ~ 2^(n-1) * n^(n-2) * (1 - LambertW(1/2)) / (1 + LambertW(1/2)). - Vaclav Kotesovec, Feb 24 2019

A350909 Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n labeled nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 2, 0, 0, 12, 6, 0, 0, 0, 128, 186, 108, 24, 0, 0, 0, 0, 2000, 5640, 7840, 6540, 3330, 960, 120, 0, 0, 0, 0, 0, 41472, 189480, 456720, 730830, 832370, 690300, 416160, 178230, 51480, 9000, 720, 0, 0, 0, 0, 0, 0, 1075648, 7178640, 26035800, 65339820
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 12,   6;
  [4] 0, 0,  0, 128,  186,  108,   24;
  [5] 0, 0,  0,   0, 2000, 5640, 7840, 6540, 3330, 960, 120;
  ...
		

Crossrefs

Row sums are A082402.
Leading diagonal is A097629.
The unlabeled version is A350449.

Programs

  • PARI
    G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*(1+y)^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)}
    row(n)={Vecrev(n!*polcoef(log(G(n)), n))}
    { for(n=1, 6, print(row(n))) }

A384718 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A052750.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 12, 49, 0, 1, 4, 21, 128, 729, 0, 1, 5, 32, 243, 2000, 14641, 0, 1, 6, 45, 400, 3993, 41472, 371293, 0, 1, 7, 60, 605, 6912, 85683, 1075648, 11390625, 0, 1, 8, 77, 864, 10985, 153664, 2278125, 33554432, 410338673, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2025

Keywords

Examples

			Square array begins:
  1,     1,     1,     1,      1,      1, ...
  0,     1,     2,     3,      4,      5, ...
  0,     5,    12,    21,     32,     45, ...
  0,    49,   128,   243,    400,    605, ...
  0,   729,  2000,  3993,   6912,  10985, ...
  0, 14641, 41472, 85683, 153664, 253125, ...
		

Crossrefs

Columns k=0..2 give A000007, A052750, A097629(n+1).

Programs

  • PARI
    a(n, k) = if(n==0, 1, k*(2*n+k)^(n-1));

Formula

A(n,k) = k * (2*n+k)^(n-1) for n > 0.
Showing 1-10 of 10 results.