A062735
Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).
Original entry on oeis.org
1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1
1;
0, 2, 1;
0, 0, 12, 20, 15, 6, 1;
0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0, 0, 0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0, 0, 0, 0, 1075648,...
-
nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
-
row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
{ for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022
A152555
Coefficients in a q-analog of the function LambertW(-2*x)/(-2*x), as a triangle read by rows.
Original entry on oeis.org
1, 2, 7, 5, 30, 42, 42, 14, 143, 297, 462, 495, 363, 198, 42, 728, 2002, 4004, 6006, 7436, 7436, 6292, 4290, 2288, 858, 132, 3876, 13260, 31824, 58604, 91364, 122876, 145535, 153361, 143936, 120185, 87971, 56329, 29939, 12584, 3575, 429, 21318, 87210
Offset: 0
Triangle begins:
1;
2;
7,5;
30,42,42,14;
143,297,462,495,363,198,42;
728,2002,4004,6006,7436,7436,6292,4290,2288,858,132;
3876,13260,31824,58604,91364,122876,145535,153361,143936,120185,87971,56329,29939,12584,3575,429;
21318,87210,242250,519384,945744,1508070,2165664,2826420,3392520,3756626,3853322,3662106,3221330,2613240,1944324,1313760,794614,420784,185640,64090,14586,1430;...
where row sums = 2*(2*n+2)^(n-1) (A097629).
Row sums at q=-1 = 2*(2*n+2)^[(n-1)/2] (A152556).
The generating function starts:
A(x,q) = 1 + 2*x + (7 + 5*q)*x^2/faq(2,q) + (30 + 42*q + 42*q^2 + 14*q^3)*x^3/faq(3,q) + (143 + 297*q + 462*q^2 + 495*q^3 + 363*q^4 + 198*q^5 + 42*q^6)*x^4/faq(4,q) + ...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1): faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases.
q=0: A(x,0) = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +... (A006013)
q=1: A(x,1) = 1 + 2*x + 12/2*x^2 + 128/6*x^3 + 2000/24*x^4 + 41472/120*x^5 +...
q=2: A(x,2) = 1 + 2*x + 17/3*x^2 + 394/21*x^3 + 21377/315*x^4 + 2537724/9765*x^5 +...
q=3: A(x,3) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +...
-
{T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); polcoeff(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
A097627
Number of rooted directed trees on n nodes with a red root.
Original entry on oeis.org
1, 2, 21, 280, 5465, 134556, 4051453, 143810416, 5884797969, 272701388980, 14116335883661, 807328717090248, 50554260752606377, 3440140092356781100, 252777268861251990045, 19946622760623381708256
Offset: 1
-
Rest[CoefficientList[Series[LambertW[-LambertW[-2*x]/2], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 08 2013 *)
-
x='x+O('x^30); Vec(serlaplace(lambertw(-lambertw(-2*x)/2))) \\ G. C. Greubel, Nov 15 2017
A350732
Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n labeled nodes with k arcs, n >= 0, k=0..n*(n-1)/2.
Original entry on oeis.org
1, 0, 2, 0, 0, 12, 8, 0, 0, 0, 128, 240, 192, 64, 0, 0, 0, 0, 2000, 7104, 13120, 15360, 11520, 5120, 1024, 0, 0, 0, 0, 0, 41472, 234240, 729600, 1578240, 2531840, 3068928, 2795520, 1863680, 860160, 245760, 32768
Offset: 1
Triangle begins:
[1] 1;
[2] 0, 2;
[3] 0, 0, 12, 8;
[4] 0, 0, 0, 128, 240, 192, 64;
[5] 0, 0, 0, 0, 2000, 7104, 13120, 15360, 11520, 5120, 1024;
...
-
row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+2*y)^(k*(k-1)/2)*x^k/k!, O(x*x^n))), n))}
{ for(n=1, 5, print(row(n))) }
A097630
Number of unrooted directed trees on n nodes with a red root.
Original entry on oeis.org
1, 1, 7, 70, 1093, 22426, 578779, 17976302, 653866441, 27270138898, 1283303262151, 67277393090854, 3888789288662029, 245724292311198650, 16851817924083466003, 1246663922538961356766, 98960637955717312632721
Offset: 1
-
terms = 17;
Rest[CoefficientList[LambertW[-LambertW[-2x]/2] + O[x]^(terms+1), x]]* Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)
-
seq(n)={Vec(serlaplace(lambertw(-lambertw(-2*x + O(x*x^n))/2)/x))} \\ Andrew Howroyd, Dec 13 2018
A380646
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x)/(1 + x)^2 ).
Original entry on oeis.org
1, 4, 46, 932, 27568, 1080432, 52916176, 3115326496, 214470890496, 16914853191680, 1504252282653184, 148956086481767424, 16256865070022066176, 1938988214539948730368, 250943399365390735104000, 35026523834624205803491328, 5245178283068781060488298496, 838841884254236846183525646336
Offset: 0
-
nmax=18; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-2*x]/(1 + x)^2 ,{x,0,nmax}]],x]Range[0,nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
-
a(n) = 2*n!*sum(k=0, n, (2*n+2)^(k-1)*binomial(2*n+2, n-k)/k!);
A377360
E.g.f. satisfies A(x) = ( 1 - log(1 - x*A(x)) )^2.
Original entry on oeis.org
1, 2, 12, 130, 2082, 44488, 1192964, 38557860, 1459988440, 63414711072, 3108861424032, 169829819311392, 10230860299538400, 673850170929176928, 48176129912775680160, 3715759452364764485280, 307545698210584533055488, 27190399275422185989742080, 2557448587458299889542868480
Offset: 0
-
nmax = 20; CoefficientList[1/x * InverseSeries[Series[x/(1 - Log[1 - x])^2, {x, 0, nmax + 1}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 27 2025 *)
-
a(n) = 2*(2*n+1)!*sum(k=0, n, abs(stirling(n, k, 1))/(2*n-k+2)!);
A097631
Number of unrooted directed trees on n nodes with a green root.
Original entry on oeis.org
0, 1, 5, 58, 907, 19046, 496869, 15578130, 570573623, 23929861102, 1131235173433, 59529368839898, 3451899685313523, 218712237867226182, 15034642075916533997, 1114519318895861250082, 88631119148029975177327, 7526795487859400166772958, 679859967684397018073935617
Offset: 1
-
(* Note: Mathematica's ProductLog is the Lambert W function. *)
a[n_] := SeriesCoefficient[-ProductLog[-ProductLog[-2x]/2]/n - ProductLog[-2x] (ProductLog[-2x] + 2)/4, {x, 0, n}] n!;
Array[a, 17] (* Jean-François Alcover, Feb 24 2019 *)
A350909
Triangle read by rows: T(n,k) is the number of weakly connected acyclic digraphs on n labeled nodes with k arcs, k=0..n*(n-1).
Original entry on oeis.org
1, 0, 2, 0, 0, 12, 6, 0, 0, 0, 128, 186, 108, 24, 0, 0, 0, 0, 2000, 5640, 7840, 6540, 3330, 960, 120, 0, 0, 0, 0, 0, 41472, 189480, 456720, 730830, 832370, 690300, 416160, 178230, 51480, 9000, 720, 0, 0, 0, 0, 0, 0, 1075648, 7178640, 26035800, 65339820
Offset: 1
Triangle begins:
[1] 1;
[2] 0, 2;
[3] 0, 0, 12, 6;
[4] 0, 0, 0, 128, 186, 108, 24;
[5] 0, 0, 0, 0, 2000, 5640, 7840, 6540, 3330, 960, 120;
...
-
G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*(1+y)^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)}
row(n)={Vecrev(n!*polcoef(log(G(n)), n))}
{ for(n=1, 6, print(row(n))) }
A384718
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A052750.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 12, 49, 0, 1, 4, 21, 128, 729, 0, 1, 5, 32, 243, 2000, 14641, 0, 1, 6, 45, 400, 3993, 41472, 371293, 0, 1, 7, 60, 605, 6912, 85683, 1075648, 11390625, 0, 1, 8, 77, 864, 10985, 153664, 2278125, 33554432, 410338673, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 5, 12, 21, 32, 45, ...
0, 49, 128, 243, 400, 605, ...
0, 729, 2000, 3993, 6912, 10985, ...
0, 14641, 41472, 85683, 153664, 253125, ...
Showing 1-10 of 10 results.
Comments