cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380647 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-3*x)/(1 + x)^3 ).

Original entry on oeis.org

1, 6, 105, 3246, 146637, 8780688, 657224901, 59140486800, 6223651526457, 750357182131200, 102014741343847329, 15443915464974191616, 2576937457466957107845, 469914373917914931984384, 92982800086882512621716925, 19843243096453465663599962112, 4543276116844426827394718716401
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=17; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-3*x]/(1 + x)^3 ,{x,0,nmax}]],x]Range[0,nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
  • PARI
    a(n) = 3*n!*sum(k=0, n, (3*n+3)^(k-1)*binomial(3*n+3, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * exp(3 * x * A(x)).
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377893.
a(n) = 3 * n! * Sum_{k=0..n} (3*n+3)^(k-1) * binomial(3*n+3,n-k)/k!.

A380648 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-4*x)/(1 + x)^4 ).

Original entry on oeis.org

1, 8, 188, 7816, 475096, 38289504, 3857806144, 467330651456, 66209818738176, 10747317030192640, 1967261819870112256, 400989528160028255232, 90087157573721153554432, 22119056538323287540637696, 5893098619063477612068864000, 1693364632974231188010697990144
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=16; CoefficientList[(1/x)InverseSeries[Series[x*Exp[-4*x]/(1 + x)^4, {x, 0, nmax}]], x]Range[0, nmax-1]! (* Stefano Spezia, Feb 06 2025 *)
  • PARI
    a(n) = 4*n!*sum(k=0, n, (4*n+4)^(k-1)*binomial(4*n+4, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = (1 + x*A(x))^4 * exp(4 * x * A(x)).
a(n) = 4 * n! * Sum_{k=0..n} (4*n+4)^(k-1) * binomial(4*n+4,n-k)/k!.

A380945 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-2*x) ).

Original entry on oeis.org

1, 4, 50, 1124, 37192, 1637232, 90278176, 5992556320, 465599728512, 41470892979200, 4167168740195584, 466428111222196224, 57556315795242096640, 7763511917730857967616, 1136484206117494859980800, 179453678311835212416585728, 30404317385796994658988752896
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=2, r=2, s=2, t=0, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(2*x*A(x))/(1 - x*A(x))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380723.
a(n) = 2 * n! * Sum_{k=0..n} (2*n+2)^(k-1) * binomial(3*n-k+1,n-k)/k!.
Showing 1-3 of 3 results.